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Preface

Mathematics has always been an exciting challenge for both of us. Even before
university, we thoroughly enjoyed getting to grips with calculus and meeting
stuff like vectors and mechanics for the first time. The only problem that we
both found when we first started our degrees was that amongst our new peers,
different people had very different mathematical backgrounds. Some had done
“single maths,” some “double,” and some an entirely different syllabus alto-
gether. We quickly learned that a mathematics degree requires mastery of a
whole range of ideas: including those that you haven’t studied before.

The aim of this book is in no way to teach you everything that you would
learn in the first year of a mathematics degree. Instead, our aim was to write
a book that you could read before going to university that would give you a
solid foundation on which to build all of the new skills that you will acquire.
That way, when you actually arrive at university you will have much more
time for all of the other amazing things that being a student offers, rather than
having to spend hours looking up something that you could easily learn in a few
minutes from a straightforward book like this. To this end, we have included an
appendix of loads of formulae and identities so that you can spend your nights
partying rather than searching in the library for the integral of tanx.

I suppose being young means being radical, so we’ve written this book
backwards. Not crazy, “read in the mirror” backwards, but the chapters are
set out in the reverse of what you are probably used to seeing. Each chapter
is designed to be a completely stand-alone entity, and chapters always start
with some questions. Our reason for doing this is so that if you see a chapter
title about something with which you are familiar, you can dive straight into
some questions then head off to the next chapter without having to read any
explanation of the topic. If you really want to fly through the material, the
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first ten “Test Yourself” questions of each chapter are designed to cover the
key points. If you can score close to full marks on these, you’re doing pretty
well. If what the questions are asking looks foreign to you, work through the
chapter and the rest of the exercises and come back to these last. All being well,
you’ll be able to do them within a reasonably short time. If you have already
studied a lot of “pre-university” maths, you may well have a good knowledge of
quite a few of the earlier chapters’ contents. If you haven’t, there will obviously
be more chapters where you’ll be starting afresh. For those readers taking
the International Baccalaureate (or any other equivalent qualification) the key
to success is exactly the same – study what you need to, pass over what you
don’t. In any case, the latter chapters move further away from school and college
mathematics and towards degree-style thinking, so as the book progresses there
is certainly something for everyone.

Please don’t ever be disheartened if you’re finding some things difficult. We
wrote this book in the hope that it could help prepare you as fully as possible
for your studies, so that you can have the best time at university, both in terms
of academic achievement and your student life as a whole. There may be times
when you would like more practice with a new skill, and so we thoroughly
recommend that in these instances you search out some more questions to do,
either from the Internet or from other books.

On the whole, we hope that regardless of whether you are a student who
has just decided to study maths further, or you are someone just about to set
off to university, this book will serve you well as a single, cohesive guide that
draws on your knowledge thus far and helps shape it so that you are ready to
tackle the challenges of the mathematics ahead.

Martin Gould and Edward Hurst
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1
Inequalities

Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. Write a list of all the whole number solutions to 5 ≤ x < 8.

2. Solve the inequality x + 2 < 7.

3. Solve the inequality 3x + 4 ≥ 5x + 2.

4. Solve the inequality −3x < −12.

5. Use a graphical method to solve 3x ≥ 5 − 2x.

6. Use a graphical method to solve x2 > 1.

7. Use a graphical method to solve x2 − 4 < 3x.

8. Algebraically solve the inequality x2 > 3x.

9. Algebraically solve the inequality x−4
x+10 < 0.

10. Algebraically solve the inequality x+3
x−2 < x + 6.



2 1. Inequalities

1.1 What Are Inequalities?

An inequality is just a statement that involves at least one of the signs <, ≤,
> or ≥ (i.e., “less than,” “less than or equal to,” “greater than,” or “greater
than or equal to”). In many ways we can treat them just the same as we treat
equalities [i.e., any statement with the = (“equals”) sign], but there are some
pitfalls that we need to be careful to avoid along the way, and sometimes a few
extra steps are required in our calculations.

What’s the Point?

Inequalities are very useful when the solution to a problem that we are con-
sidering contains lots of (perhaps infinitely many) values. Here’s a really basic
example:

You have £10 in your wallet and you want to buy a CD. What price
can the CD be so that you can afford it?

Clearly, the answer is anything less than or equal to £10. If we assume that
the cheapest the CD could possibly be is free (so the shop aren’t going to pay
you to take it away from them!), then any value greater than or equal to £0.00
and less than or equal to £10.00 is OK for us. Therefore, our solution could be
written as a list: £0.00, £0.01, £0.02, £0.03 and so on, up to £9.99, £10.00.
The only problem with this is that writing out all these values would take the
best part of a day, and the shop would be closed before you had a chance to
make it to the counter with your selection. Therefore, we use an inequality to
express the solution like this:

We can buy the CD for all x satisfying: £0.00 ≤ x ≤ £10.00.

The example of prices in a shop is a good starting point, because we can
see the equivalence between the two ways of writing the answer. But what if
we were thinking about some quantity where the interval (or “step”) between
the possible values is not so clear? With the CD, we could write out the list
because we know that the price could only take values that increase by a penny
at a time. How about if we were in a lab, trying to measure a temperature?
There is no limit to how accurate we can go, because we could measure the
temperature to 1 decimal place, to 10 decimal places, to 100 decimal places,
and so on. In this instance, we could never write out all the possible values that
the temperature could take – and this is where inequalities become most useful.

In the CD example, prices are what is known as discrete. This means
they can only take certain values. In many real-life examples, such as the



1.1 What Are Inequalities? 3

temperature example, the set we are working with is continuous – that is,
it can take any value in a given range and there is no limit on the accuracy
that we can measure to.

Manipulating Inequalities

Much like working with equations, the process of finding the solution set of an
inequality is called “solving” it. In working with equations we know that as
long as what we do to both sides of the equals sign is the same, then we will
preserve the equality. The same thing is almost true for inequalities, but there
is an important exception that we need to remember. Firstly, let’s look at the
things we can do:

• Adding (or subtracting) the same number to each side of an inequality pre-
serves the inequality.

For example, x + 3 > 10 is the same as x > 7; and x− 3 > 10 is the same as
x > 13.

• Multiplying (or dividing) each side of an inequality by a positive number
preserves the inequality.

For example, x > 6 is the same as 2x > 12; and 2x > 6 is the same as x > 3.

• Inequalities are transitive.

You may have not met this word before, so rather than giving a formal
definition we’ll just look at an “obvious” example: in an equality, if x = 2y

and 2y = 3z, then x = 3z. The same is true if we replace equals by any of
the inequality signs: if x < 2y and 2y < 3z, then x < 3z.

Now for the annoying thing that doesn’t work the same as equalities:

• Multiplying (or dividing) each side of an inequality by a negative number
REVERSES the inequality.

For example, x > −2 is the same as −x < 2, and −2x ≥ 14 is the same as
x ≤ −7.

With this last rule comes a difficulty: before we multiply (or divide) through
by something, we need to be certain as to whether it is positive or negative.
Look at this example:

Assuming that y �= 0, solve the following inequality for x: yx < 7y.
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Gut instinct simply says x < 7, and as long as y can only be positive this is
true. But if y is negative the solution is actually x > 7, because when dividing
through by y we need to reverse the inequality. If you’re at all unsure of how
to proceed, then it’s far safer to stick to addition and subtraction wherever
possible when dealing with inequalities: when confronted with something like
2 > −x, if we subtract 2 from each side we arrive at 0 > −x − 2. Then adding
x to each side gives x > −2: the same answer that could have been found by
multiplying through the original inequality by −1, but without any danger of
forgetting to reverse the inequality.

Now that we have these tools at our disposal, it is actually possible to solve
a large number of inequalities. Here’s the first set of exercises:

EXERCISES

1.1.1. Write the list of whole numbers that satisfy the inequality 7 < x ≤
10.

1.1.2. Solve 2x > 22.

1.1.3. Solve x + 4 > 11.

1.1.4. Solve 2x + 5 ≤ 15.

1.1.5. Solve 3x − 4 < x + 6.

1.1.6. Solve x − 7 ≥ 2x + 3.

1.1.7. Solve 3x − 5 − 4x > 7.

1.1.8. Solve −x
2 + 3 ≥ 3x − 4.

1.1.9. Given that y is always positive, solve 3xy + 4y > 2y for x.

1.1.10. Given that y is always positive and z is always negative, solve 2xyz+
yz > 3xyz for x.

1.2 Using Graphs

Graphical Solutions

Consider the inequality x2 − 4 ≥ 0. Using the basic tools that we have above,
we can’t do much with this. We could certainly write x2 ≥ 4, but where do
we go from here? Before looking at the algebraic way to solve these types of
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inequalities, let’s first look at what is actually happening by taking a graphical
approach.

First of all, let’s examine Figure 1.1, the graph of y = x2 − 4.

x

y y x

Figure 1.1

How can we use this to get our solutions? If we look at our inequality, our
solutions are anything where the curve we’ve just drawn lies on or above the
line y = 0 (i.e., the x-axis). So we can see that in solving this inequality, we
actually have two regions where the solution is valid: x ≥ 2 and x ≤ −2. This
might seem unusual at first, but imagine that we were solving the equality
x2 − 4 = 0. Here, we would have two solutions (2 and −2), so in reality what
we get with the inequalities isn’t that much different from what we’re used to.
It’s worth noting, though, that if we were solving the inequality x2 − 4 ≤ 0, we
would actually only have one region that served as our solution, but it would
have two endpoints: this solution is just anywhere that our curve lies on or
below y = 0, and so the solution is simply −2 ≤ x ≤ 2.

Of course, we can now extend this tool to solve “harder” inequalities. Con-
sider the inequality x2 < x. We now have a function in x on both sides of the
inequality: but remember what we found at the end of Section 1 : we don’t know
whether x is positive or negative, so we can’t divide through by it! Instead, let’s
take the graphical approach. Draw y = x2 and y = x (these correspond to the
two sides of the inequality), as shown in Figure 1.2.



6 1. Inequalities

x

yy x
y x

Figure 1.2

All we need to do is find the region where the x2 curve is below the line
y = x. We can immediately see by eye that the solution is therefore 0 < x < 1.

Empty Solution Sets

Note that not all inequalities will have a solution. Here’s an example:

Solve x2 < −5.

Drawing y = x2 and y = −5 very quickly reveals that the x2 curve will never,
ever lie below the line y = −5. In these cases, we just write “no solutions”.

Now for some graph drawing of your own:

EXERCISES

1.2.1. Using a graphical method, solve x+2 < 7. You learned how to solve
this type of inequality in Section 1.1, so you can go back and check
your answer using algebra!

1.2.2. Using a graphical method, solve x2 ≥ 9.
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1.2.3. Using a graphical method, solve x2 − 100 < 0.

1.2.4. Using a graphical method, solve x2 − 1 > 15.

1.2.5. Using a graphical method, solve x4 < −2.

1.2.6. Using a graphical method, solve 2x + 4 < −x. Again, you learned
how to solve this type of inequality in Section 1.1, so you can go
back and check your answer using algebra!

1.2.7. Using a graphical method, solve x2 < 4x.

1.2.8. Using a graphical method, solve 2x2 ≥ 18x.

1.3 Critical Values

The final tool that we’ll look at with inequalities actually requires that we
treat them as equalities. This is an algebraic method for solving them, so it
gives us more accurate results than drawing a graph when dealing with difficult
numbers.

Finding Intersections

In drawing the graphs of the inequalities, we found that the heart of the problem
was simply to find the places where the two curves or lines intersected and
then to choose the regions of the graph (around these points) that satisfy the
condition that we were looking for. If we can do this graphically, there is no good
reason why we can’t use the same idea algebraically. We call such a method
“finding critical values” – that is, finding the values where the curves or lines
intersect.

Every time we pass through a critical value, we know that the two curves or
lines have crossed: whatever was “on top” before is now underneath, and vice
versa. To clarify this, let’s look again at the example x2 < x. First, we solve the
equation as though it were an equality, to find the critical values. We see that
the critical values are 0 and 1. Now look at the region where x is less than 0.
Here, the y = x2 curve is higher up than the line y = x. Now look at any point
between 0 and 1. Here, the line y = x is higher than the curve y = x2. Finally,
look anywhere after x = 1, and we see that y = x2 is higher than y = x. Every
time that we pass through a critical value, we swap which is above the other.
Note that the phrase “passing through” is crucial here. If we simply “touch” a
critical value, it’s possible that the curve might turn around and go back the
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way it came. For example, consider the line y = 0 and the curve y = x2. At
x = 0 they touch, but because one does not go right through the other, y = x2

remains above y = 0. A quick and easy test to see whether lines or curves go
through each other or simply touch is to substitute a value of x into each of
the equations just before and just after the point that you are testing, and to
look whether they have indeed “swapped around.”

So all we need to do is examine any point between the critical values, and
see if it satisfies our conditions. If it does, we include that region in our solution,
if it doesn’t, then the next region along must be in our solution instead. Here’s
a worked example:

Solve x3 > 4x.

First and foremost, we have to fight our instincts to divide through by x,
because we don’t know whether x is positive or negative. When we’ve done
that, we can proceed. In these calculations, it makes it easier to have a 0 on
one side, so firstly let’s rearrange to get x3 − 4x > 0.

Now, treat it as if it’s an equality, and solve it to find the critical values.
The equation x3 − 4x = x(x + 2)(x− 2) = 0 has three solutions, which are −2,
0 and 2. So the critical values are −2, 0 and 2.

Take the first region, which is where x < −2. The number −10 is good
enough for us, as that’s certainly less than −2. Setting x as −10, we get −1000+
40 = −960. This is definitely less than 0, so this region is no good for us.
Therefore, the next region along (which is −2 < x < 0) is OK for us so
long as the curves pass through each other at the critical value. We can easily
test this by substituting in a number that is present in this range: −1 seems
an obvious candidate. Making the substitution yields 3 on the left-hand side,
which is indeed greater than 0. By the same logic, the region after that (which
is 0 < x < 2) is definitely not OK for us if the curves pass through each other at
the critical value. Testing the substitution x = 1 proves this to be true. Lastly,
the final region (which is x > 2) must be OK for us if the curves pass through
each other at the last critical value. Testing x = 3 shows us that this is true.

Therefore, the solution is −2 < x < 0 and x > 2. In doing just a simple
equality calculation and then a quick substitution, we have found the whole
solution set to the problem. This type of calculation is the key to all work with
inequalities. If you didn’t quite follow the logic, read over the example a couple
more times.
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Asymptotes

The last type of inequality that we’re going to look at uses the same idea along
with the idea of an asymptote. Hopefully you’ll have met these before (even
if you didn’t know the name “asymptote”). An asymptote is just a line in a
graph that a function gets closer and closer to, without actually touching. That
sounds a bit wordy, but think of the graph of y = 1

x . At values of x a tiny bit
less than 0, the values of y are very, very negative. Suddenly, at values of x a
tiny bit greater than 0, the values of y are very, very positive. This is because
at x = 0, there is an asymptote in the graph, as shown in Figure 1.3.

x

y

Figure 1.3

“So, how do asymptotes work with inequalities?” I hear you cry. It’s rea-
sonably simple, and here’s an example:

Solve
x + 3
x − 2

< 0

We know from earlier examples that we need one side to be 0, but we already
have this, so the first step is completed for us. On to finding the critical values:
We know that if the numerator of the fraction on the left-hand side is 0, then
the whole left-hand side is 0, so x = −3 is definitely a critical value.

Now, remember what an asymptote does: It has the potential to switch
values from being positive to negative, or vice versa. That means that if a line
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or curve was on top before, it might be underneath after “going through” an
asymptote, and vice versa. This is exactly our criteria for labelling a point as
a critical value, so we know that whenever a line or curve “goes through” an
asymptote, there is potentially also a critical value. Handy!

Whenever there is a 0 in the denominator we are going to have an asymptote,
so all we have to do is find the values of x where the denominator is 0 and we
will find the rest of the critical values. In our example, the only time that this
happens is x = 2. Therefore, all the critical values are x = 2 and x = −3.
We quickly test any point in the region x < −3: choosing x = −5 yields 2

7 ,
which is certainly greater than 0, so this region is no good for us. By making
substitutions from the remaining two regions, we see that the next region is
OK (i.e., −3 < x < 2), and the final region isn’t. The solution is −3 < x < 2.
Done!

Nonzero Woes

The only thing that could have made this problem harder was if we didn’t start
with a 0 on the right-hand side. Let’s take a look at one final example to end
the chapter:

Solve
x + 16
x + 4

> x − 6

Hopefully any temptations you have to multiply through by x + 4 will have
long gone, so instead let’s subtract x − 6 from both sides. This leaves us with:

x + 16
x + 4

− (x − 6) > 0

Now, in order to do any of the tricks we’ve seen above, we need to combine the
left-hand side to a single fraction. The common denominator of x + 4 looks as
good as any, so let’s go:

x + 16 − (x − 6)(x + 4)
x + 4

> 0

Simplifying:

−x2 + 3x + 40
x + 4

> 0

Get rid of that nasty minus sign by multiplying through by −1 (remembering
to reverse the inequality):

x2 − 3x − 40
x + 4

< 0
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Now set the numerator equal to 0 and solve (we can factorise here, but some-
times we might need to make use of the quadratic formula) to get two roots of
x = −5 and 8. Set the denominator equal to 0 and solve to get the root x = −4.
Now examine something in the first region of x < −5. The value x = −10 is
good enough for this, and it yields −5, which is indeed < 0, so this region is
OK for us. The next region (−5 < x < −4) is not, and the region after that
one (−4 < x < 8) is also OK, but the final region (x > 8) isn’t. Hence our
solution is x < −5 and −4 < x < 8.

Here comes the final set of exercises:

EXERCISES

1.3.1. Solve x2 > 4 without using a graph.

1.3.2. Solve x2 > 2x without using a graph (and place yourself under
citizen’s arrest if you even thought about dividing by x).

1.3.3. Solve x2 < 7x without using a graph.

1.3.4. Solve x2 + 3 > −4x without using a graph.

1.3.5. Solve x2 + 6x < 3 without using a graph.

1.3.6. Solve x+8
x+4 > 0 without using a graph.

1.3.7. Solve x+6
x−3 < 0 without using a graph.

1.3.8. Solve x+5
x−2 > x + 5 without using a graph (Division is still highly

illegal: What if x were, say, −10? Who’d be laughing then?)

1.3.9. Solve x−2
3−x < 3 without using a graph.

1.3.10. Solve 2x+5
x−3 < x + 1 without using a graph.

Where Now?

Note that in the final section we’ve only dealt with strict (i.e., < or >) inequal-
ities. In the “critical value” method, the way we have to do things is to treat
everything as though it is a strict inequality, and then at the very end manually
“test” (i.e., substitute in) the endpoints of our regions to see whether they are
OK or not. If they are, we use ≤ or ≥ in our solution. If not, we can only use
the strict inequalities instead.
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There will be plenty of time to practice manipulating inequalities at univer-
sity, but it’s definitely worth taking a look at some harder questions before you
go. A Concise Introduction to Pure Mathematics (M. Liebeck, Chapman and
Hall/CRC, 2000) has an excellent chapter on the topic, and some challenging
exercises too.

Inequalities are used all the time in proofs. Imagine that we can prove that
something is ≤ 10 and at the same time ≥ 10. Then the only possible value
that this can take is exactly 10. This sort of logic is very helpful in analysis.

Inequalities are also very useful in disproving things. If we can show that
something is both > 10 and < 10 at the same time, we know we have found an
inconsistency in the original statement.



2
Trigonometry, Differentiation

and Exponents

Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. Use the identity sin2 x + cos2 x = 1 to show that cosec2x − cot2 x = 1.

2. Find the exact value of sin
(

7π
12

)
, leaving your answer as a surd.

3. Find the exact value of cos
(

5π
6

)
, leaving your answer as a surd.

4. Show that tan(2x) = 2 tan x
sec2 x−2 tan2 x .

5. Use the quotient rule to evaluate d
dx

(
x2cosec x

)
.

6. Use the chain rule to evaluate d
dx

(
cos2(2x)

)
.

7. Find
∫ π

3
0

(
cos2 x − 1

2

)
dx.

8. Simplify e7x · e3x.

9. Evaluate d
dx

(
4xe2x

)
.
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10. Evaluate d
dx

(
ln(3x2)

)
.

2.1 Some Identities

Most of you will have met trigonometry many, many times before. This chapter
is designed to be a quick whistlestop tour through lots of key ideas that are
absolutely fundamental to mathematics: At university you won’t be using these
tools and concepts on their own, but rather as a small part of far wider reaching
problems. As such, it’s crucial that you’re entirely comfortable with the mate-
rial in this chapter. It will come up many times (without further explanation)
in the course of this book!

This and That

One of the most important skills to master in trigonometry is being able to
spot links between the different trigonometric functions. This lets us rewrite
expressions that are difficult to work with in a “nicer,” but equivalent, form.
For example, you’ll almost certainly know from your previous studies that
tanx = sin x

cos x , and often making this substitution enables us to progress through
a problem. For example, if we were asked to simplify sin x

tan x , then by making the
substitution we can immediately see that the expression cancels down to cos x,
eliminating both the difficulty of working with fractions and the difficulty of
working with different trigonometric functions simultaneously.

Let’s take a look at three more expressions which are hopefully familiar to
you:

cosecx =
1

sin x

sec x =
1

cos x

cot x =
1

tanx
=

cos x

sin x

If you haven’t met these functions before, don’t despair: there isn’t really
anything to get to grips with. As mathematicians, we’re so familiar with the
standard trigonometric functions that whenever we get confronted with a cosec,
sec or cot expression, we can simply make the substitution back to sin, cos or
tan if that’s easier. If you’re having trouble remembering which of cosec, sec
and cot correspond to sin, cos and tan, the trick to remember is that the third
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letter of cosec, sec and cot will give you the first letter of the corresponding
sin, cos or tan function.

The Big Daddy

You’ll have no doubt met him before. He’s the maddest, baddest identity in
town:

sin2 x + cos2 x ≡ 1

Although it crops up all over the place, you might not have seen a derivation
of the identity, so here’s a neat one. Consider the triangle shown in Figure 2.1.

Figure 2.1

By the standard definitions of sin and cos, we arrive at sinx = O
H and

cos x = A
H . If we square and add these expressions, we get:

sin2 x + cos2 x =
O2

H2
+

A2

H2

=
O2 + A2

H2

Using Pythagoras, we can see that O2 + A2 = H2. Making this substitution
into sin2 x + cos2 x = O2+A2

H2 , we arrive immediately at sin2 x + cos2 x = 1.
Sorted.

The identity sin2 x + cos2 x = 1 is useful on many different occasions, and
from it we can even derive some other useful identities. For example, if we
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divide through by cos2 x, we arrive at:

sin2 x

cos2 x
+

cos2 x

cos2 x
=

1
cos2 x(

sin x

cos x

)2

+ 1 =
(

1
cos x

)2

tan2 x + 1 = sec2 x

Similarly, if we take sin2 x + cos2 x = 1 and instead divide through by sin2 x,
we arrive at cosec2x = 1 + cot2 x.

Angle Formulae

Here are some more very useful identities:

sin(A ± B) = sin A cos B ± sin B cos A

cos(A ± B) = cos A cos B ∓ sin A sin B

If you’d like to see a proof of one of these formulae, we provide one in “Where
Now?” at the end of the chapter.

It’s important to remember which way around the ± or ∓ signs go: in the
first identity, if we’re finding sin(A + B) we get sin A cos B + sinB cos A. In
the second identity, however, the sign is reversed: that means cos(A + B) =
cos A cos B − sin A sin B. If you don’t want to memorise that blindly we can
actually see why it must be true by considering the following derivation:

• Take the equality cos(A + B) = cos A cos B − sin A sin B.

• Set B = −C.

• Substituting this into our equality yields cos(A − C) = cos A cos(−C) −
sin A sin(−C).

• Recall that sin is an odd function, which means that sin(−x) = − sin(x) (if
you’re uncertain about this, take a look at Figure 2.2 and convince yourself!).

• Recall that cos is an even function, which means that cos(−x) = cos(x)
(again, see Figure 2.2 if you’re not convinced).

• Using both of these facts, our identity cos(A − C) = cos A cos(−C) −
sin A sin(−C) becomes cos(A − C) = cos A cos C + sin A sin C.

If you’re wondering what these identities are useful for, then here’s an example
of how they can allow us to keep our calculations exact (i.e., without needing
to resort to a calculator and hence inevitably rounding) for as long as possible:
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x

y

x

y
y xy x

Figure 2.2

Find the exact value of cos
(

π
12

)
.

In the trigonometric universe, it’s standard to be expected to know the values
of the sin, cos and tan of 0, π

6 , π
4 , π

3 and π
2 . You need to know these, so get

onto it now if you don’t. They’re in the appendix of this book if you need a
reference. But how does knowing the set of angles listed above help us to find
the exact value of cos

(
π
12

)
? Simple – we use the identities we’ve just seen.

You see, π
12 = π

3 − π
4 , so we can rewrite the question as: “Find the exact

value of cos
(

π
3 − π

4

)
.” From here, we’re just plugging numbers into a formula:

cos
(π

3
− π

4

)
= cos

π

3
cos

π

4
+ sin

π

3
sin

π

4

=
1
2
· 1√

2
+

√
3

2
· 1√

2

=
1

2
√

2
+

√
3

2
√

2

=
1 · √2 +

√
3
√

2
2
√

2
√

2

=
√

2 +
√

6
4

And there we have it – an exact answer with no rounding.
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The Double Angle Formulae

If we take the identities from the previous section and also let A = B, we arrive
at two particularly nice identities:

sin(2x) ≡ 2 sinx cos x

cos(2x) ≡ cos2 x − sin2 x

But remember “the big daddy” identity: sin2 x + cos2 x ≡ 1. We can rearrange
this to get either of cos2 x ≡ 1 − sin2 x or sin2 x ≡ 1 − cos2 x, and substituting
these into our formula for cos(2x) yields:

• cos(2x) ≡ 1 − 2 sin2 x

• cos(2x) ≡ 2 cos2 x − 1

These little beauties come in handy when trying to integrate sin2 x or cos2 x,
because they allow us to make a clever substitution – but more about that at
the end of the chapter.

Show and Tell

We’ll end this section by looking at a typical question about trigonometric
identities. It’s fairly common to be asked to show that a given identity is true,
so here’s a worked example:

Show that
sin(2x)
sin2 x

= 2 cot x

We’re going to start by taking the left-hand side and making it into the right-
hand side. Using the identity sin(2x) = 2 sinx cos x, we find that:

sin(2x)
sin2 x

=
2 sinx cos x

sin2 x

= 2
cos x

sin x

= 2 cotx

Now for some exercises!
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EXERCISES

2.1.1. Show that sec x
(
sin3 x + sin x cos2 x

)
= tan x.

2.1.2. Show that tanx sin x = sec x − cos x.

2.1.3. Find the exact value of sin
(

π
12

)
, leaving your answer as a surd.

2.1.4. Find the exact value of cos
(

5π
12

)
, leaving your answer as a surd.

2.1.5. Find the exact value of sin
(

5π
6

)
, leaving your answer as a surd.

2.1.6. Find the exact value of cos
(

7π
12

)
, leaving your answer as a surd.

2.1.7. Express sin2 x in terms of cos(2x).

2.1.8. Show that sin(2x) tan x = 1 − cos(2x).

2.1.9. Show that cos(2x) sin(2x)
2 cos2 x = sin(2x) − tanx.

2.1.10. Using the fact that tanx = sin x
cos x , prove the following identity:

tan(A ± B) =
tanA ± tanB

1 ∓ tanA tanB

2.2 Differentiating

How do we go about differentiating the basic trigonometric functions? What
sort of answers should we expect? Let’s start by taking a look back at the
graphs of the functions y = sinx and y = cos x, as shown in Figure 2.2.

We’re going to take a graphical approach to this question. If we think about
differentiating a function in one variable, the derivative represents the gradient
of the function. So if we can find an explicit expression of the gradient of sin x,
we’ll have found the derivative of sinx. Looking carefully at the graph of y =
sin x, we can see that there are turning points at all of . . . −3π

2 , −π
2 , π

2 , 3π
2 , . . .,

and so all of these points have a gradient of 0. We can also examine the gradient
of y = sin x at other places: if we draw the line y = x on top of the curve
y = sinx, at x = 0 we see that the gradient of y = sinx at x = 0 is equal to 1,
as shown in Figure 2.3.

Then, because we know that sinx is 2π periodic – that is, it repeats itself
every 2π – we know that the gradient at the points . . . − 4π,−2π, 0, 2π, 4π, . . .

is equal to 1. We can use a similar visual argument at x = π to see that the
line there is parallel to y = −x, and so the gradient there is −1. We can use the
periodicity again to see that the gradient at the points . . . − 3π,−π, π, 3π, . . .

is equal to −1.
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x

y
y x

y x

Figure 2.3

If we then find the gradient of y = sinx at various other places, we can begin
to build up a picture of what the derivative of sinx will look like. Although this
“visual” method is a little crude (we discuss a better method of deriving the
result in “Where Now?”), it does provide us with the correct graphical result,
as shown in Figure 2.4.

This looks strangely familiar – it’s our old friend cosx! We can use a similar
method to derive the derivative of cosx: this time, we find that the result is
− sin x.

Chains, Products and Quotients

Now that we have the basic results of d
dx (sin x) = cos x and d

dx (cos x) = − sin x,
we can find the derivative of a whole range of trigonometric functions. Before
we do that, however, we’re going to have a quick recap of the chain, product
and quotient rules for differentiation. We’re not going to prove them here, but
there’s a quick discussion of where you can find the proofs in “Where Now?”
at the end of the chapter.

Let’s start with the chain rule. You might not have seen it in the formal
language of functions before, so here it is:
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x

y

Figure 2.4

d

dx
(M(N(x))) = M ′(N(x)) · N ′(x)

Don’t be daunted if this form of the rule isn’t familiar to you. If you’re used to
the chain rule being written as something like dM

dx = dM
dN

dN
dx , just take a moment

to see that the definition above is precisely equivalent. Here’s an example of
the rule in action, which you should hopefully be more comfortable with. If you
really haven’t seen the chain rule before, you’ll definitely need to go and look
it up before proceeding.

Evaluate
d

dx
(sin(2x))

The first thing to do is to identify how this function relates to the standard
form of M(N(x)). We know that M(N(x)) is sin(2x), and so N(x) must be
2x here. Therefore N ′(x), which is “the derivative of N with respect to x,”
is equal to 2, and M ′(N(x)), which is “the derivative of M with respect to
N(x),” is equal to cos(N(x)). Putting everything together yields the final result
d
dx (sin(2x)) = 2 cos 2x. As we said above, if you’re struggling with this you’ll
need to get a good explanation from somewhere, but finding one should be
easy.
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Next comes the product rule. This one says that, for two functions u and v

in x:
d

dx
(uv) = v

du

dx
+ u

dv

dx

We’re going to jump straight in with an example:

Evaluate
d

dx
(sin x cos x)

We’ll let u = sin x and v = cos x, meaning that du
dx = cos x and dv

dx = − sin x.
Therefore, by the product rule, d

dx (sinx cos x) = cos2 x − sin2 x.
Finally, we’ll look at the quotient rule. We use this to evaluate derivatives

such as d
dx

(
u
v

)
, where u and v are functions of x. If you’re happy enough using

the product rule, you may be interested to note that u
v = u · 1

v . Hopefully you’ll
spot that this means we can actually get by without knowing the quotient rule
specifically! However, if you’re more comfortable with an explicit formula, the
quotient rule is:

d

dx

(u

v

)
=

v du
dx − u dv

dx

v2

As before, we won’t go into a derivation, just an example:

Evaluate
d

dx
(tanx)

Before starting to panic that we haven’t worked out the derivative of tanx

yet, think back to the very first thing we looked at in this chapter: the identity
tanx = sin x

cos x . If we make that substitution, we now know that we’re actually
looking to evaluate d

dx

(
sin x
cos x

)
. Call back the quotient rule, and now we’re on

the home straight. Letting u = sinx and v = cos x, and noting that du
dx = cos x

and dv
dx = − sin x, we can plug everything into our quotient rule formula to

arrive at:

d

dx
(tanx) =

cos2 x + sin2 x

cos2 x

=
1

cos2 x

= sec2 x

There’s been lots of material in this section, and it’s all be covered very quickly –
make sure to have a thorough bash at the exercises.
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EXERCISES

2.2.1. Use the product rule to evaluate d
dx

(
x2 cos x

)
.

2.2.2. Use the product rule to evaluate d
dx

(
1
2x6 tanx

)
.

2.2.3. Use the quotient rule to evaluate d
dx (cosecx).

2.2.4. Use the quotient rule to evaluate d
dx (cot x).

2.2.5. Evaluate d
dx (x sec x).

2.2.6. Use the chain rule to evaluate d
dx

(
1
2 sin(4x)

)
.

2.2.7. Use the chain rule to evaluate d
dx

(
cos6 x

)
.

2.2.8. Use the chain rule (twice!) to evaluate d
dx

(
sin2

(
x
2

))
.

2.2.9. Evaluate
∫ π

4
0

cos(3x)dx.

2.2.10. Evaluate
∫ π

3
0

sin2 x dx.

2.3 Exponents and Logarithms

Consider the line y = x. At any point on the line, the gradient is equal to 1.
Nothing too special there. Let’s turn the heat up a little, and consider the curve
y = x2. Now, the gradient at any point is equal to twice the x coordinate: what
we see is a functional relationship between the x coordinate and gradient of
the line.

That’s all well and good, but why is it interesting to us? In both of those
cases, we might consider the gradient to be a by-product of the way that we
define the line or curve: Simply differentiating the equation of the line or curve
gives us the result. But how about turning things on their head? How about
considering something whose derivative was the most interesting thing about
it?

Imagine a curve whose gradient was always equal to the equation of the
curve itself. That would mean that for any value of x, the gradient would
be equal to the value the function itself takes. Sound a little crazy? Well the
exponential function ex does exactly that. At x = 0, the gradient of the function
is equal to e0 = 1. At x = 1, the gradient of the function is equal to e1, at
x = 2, the gradient of the function is equal to e2, and so on. But what is this
elusive e?
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Back to Reality

e is like π. It’s a real number that has an amazing property: Whereas π helps us
describe the relationship between the radius and the circumference of a circle,
e helps us describe the function whose gradient is always equal to the value
of the function itself. A nifty property, I’m sure you’ll agree, but e is a real
number, and don’t you forget it! You can find an approximation to the value
of e using a calculator, but to five decimal places e ≈ 2.71828.

Figure 2.5 shows the graph of the curve y = ex.

x

y y e

Figure 2.5

From the graph, we can note some interesting properties of the the expo-
nential function, y = ex:

• e0 = 1.

• As x gets very negative, the value of ex approaches 0, but from above (so ex

never takes a value less than 0).

• As x gets larger, ex gets larger incredibly quickly.

One crucial thing to remember about ex is the very property that defines it:
The gradient is equal to the value the function itself takes. Stated formally, we
write d

dx (ex) = ex. Not too hard to remember, is it? The derivative of ex is ex.
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Remember that the standard rules for working with powers apply to ex too, so
we have:

• ea · eb = ea+b

• ea

eb = ea−b

• (ea)b = eab

One last tool that often comes in handy when working with ex is the chain rule.
If we’re trying to evaluate d

dx

(
ef(x)

)
, the chain rule tells us that the answer

we’ll get is f ′(x) · ef(x). Make sure you’re happy with where this comes from.
Remember that the derivative of ef(x) with respect to f(x) is simply ef(x).
Here’s a concrete example:

Find
d

dx

(
ex2
)

Using what we have above, we see that the answer is 2x · ex2
. That’s it!

Turn It, Leave It, Stop – Invert It

As a function, just like many of the “old favourites,” ex has an inverse. Although
it has many interesting properties in its own right, we’re going to think of the
natural logarithm of x, written ln(x), as simply being the inverse of ex. As such,
we can immediately state that:

• ln(ex) = x

• eln(x) = x

As with all invertible functions, we can find the graph of ln(x) by reflecting its
inverse, ex, in the line y = x, as shown in Figure 2.6.

Hopefully you’ll be very familiar with how to manipulate logarithms in
general (if you aren’t, you’ll definitely benefit from taking some time to research
this before university), and the natural logarithm is no exception to the rules
that you know and love. In fact, the natural logarithm is so closely related to
e because it is the logarithm with base e; it’s that simple! There’s a list of
some of the “tricks” that we can employ when working with logarithms in the
appendix of this book, but one final thing that we’re going to examine a little
more closely is the derivative of ln(x).

We’re going to attempt to discover the derivative of ln(x) in the same way
that we did for sinx, that is, take a look at the graph of the function and see
how the gradient would look if we plotted it.
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x

y
y e

y x

y x

Figure 2.6

At values of x that are only slightly greater than 0, the gradient of ln(x) is
very, very large. As we increase the value of x we find that the gradient of ln(x)
falls rapidly, and then for very large values of x the gradient of ln(x) approaches
0 (but from above, so its gradient is never less than 0). If we carefully draw a
graph of these results, we would find that it looks like Figure 2.7.

Again, hopefully you’ll recognise this old chestnut: Figure 2.7 is the graph
of y = 1

x . Admittedly, it’s restricted to the positive values of x, but then again
ln(x) is only defined for these values of x, so we’re OK! So, stating it formally:
d
dx (lnx) = 1

x .
We’ll conclude the chapter by again calling on the chain rule. You’re prob-

ably sick of reading it by now, so we’ll dive straight into an example and then
head off to the exercises:

Evaluate
d

dx
(ln(2x))

The answer is fairly straightforward by the chain rule, but it might not be what
you expect: The derivative of 2x is 2, and so d

dx (ln(2x)) = 2 · 1
2x = 1

x . If you
thought that the answer was going to be 2

x or 1
2x , you just need to be very

careful when using the chain rule because we get a cancellation that you might
not predict.
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x

y

Figure 2.7

EXERCISES

2.3.1. Simplify e4x · e3x.

2.3.2. Simplify e6y

e3x .

2.3.3. Simplify ln(e4x).

2.3.4. Simplify eln(x3).

2.3.5. Evaluate d
dx

(
e2x
)
.

2.3.6. Evaluate d
dx

(
1
3ex3

)
.

2.3.7. Use the product rule to find d
dx (ex sin x).

2.3.8. Evaluate d
dx

(
ln(x3)

)
.

2.3.9. Evaluate d
dx

(
ex2

ln(4x)
)
.

2.3.10. Evaluate d
dx

(
4x3 ln(x2)

)
.
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Where Now?

In this chapter we’ve looked at a large assortment of different tools that come
in handy in all sorts of mathematical problems. To state precisely where these
tools lead would require a whole book in itself, and even then would only cover
the tip of the iceberg. Throughout the rest of this book you’ll be using these
techniques, and so you’ll be able to gain some insight into where you might
employ specific mathematical techniques.

In this chapter we’ve touched on a couple of ideas that may be aided by a
lengthier explanation than was already given. If you find these sorts of proofs
helpful, then we recommend you take a careful look at what follows. If you find
it a bit confusing, don’t be afraid to head straight to the next chapter.

We’ll start with a proof of the addition formula sin(α + β) = sinα cos β +
sin β cos α. If you enjoy this, proofs of other addition and subtraction formulae
are readily available in Analysis by its History (E. Hairer and G. Wanner,
Springer-Verlag, New York, 1996). The proofs there don’t take a geometric
route like we have, but they’re enjoyable all the same!

We’ll be using Figure 2.8 throughout the proof.

Figure 2.8

Angles ED̂C and EĈO are right angles, as are all four angles in the rec-
tangle ABCD. Here’s the proof:

1. Scale the whole diagram appropriately so that OE is of length 1.

2. Using sinβ = opposite
hypotenuse , we get sin β = EC

1 = EC.

3. Using cos β = adjacent
hypotenuse , we get cos β = OC

1 = OC.

4. Using sinα = opposite
hypotenuse , we get sin α = AC

OC .
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5. Rearranging this gives AC = OC sin α = cos β sin α, by step 3.

6. Figure 2.9 is a “zoomed in” picture of CFDE, and here’s an explanation
of why the angles are what they are:

Figure 2.9

• Let δ = π − α.

• Because the angles in a triangle sum to π, we know that OĈA = δ.

• Because AĈD is a right angle, we know that FĈD = α.

• Because FĈE is a right angle, we know that DĈE = δ.

• Because the angles in a triangle sum to π, we know that DÊC = α.

7. Using cos α = adjacent
hypotenuse , we get cos α = ED

EC .

8. Rearranging this gives ED = EC cos α = sinβ cos α, by step 2.

9. Using sin(α+β) = opposite
hypotenuse , we get sin(α+β) = EB

1 = EB = ED +DB.

10. DB = AC because ABCD is a rectangle.

11. Combining steps 9 and 10 yields sin(α + β) = ED + AC.

12. Combining steps 5 and 8 with step 11 yields sin(α + β) = sinα cos β +
sin β cos α. There we have it!
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For those of you with a keen eye for detail, we expect that our “visual”
method of finding derivatives was a little unsatisfactory. Please don’t despair:
the results that we gave are indeed true, but there are much more rigorous
ways to achieve them than we presented. One of the more accessible comes
from power series, and this is discussed fully in Real Analysis (J. M. Howie,
Springer-Verlag, New York, 2001).

In the chapter we also mentioned the fact that we can use the formulae for
cos(2x) to help us integrate functions involving sin2 x and cos2 x. Here’s how:

∫
cos2 x dx =

1
2

∫
(cos(2x) + 1) dx

=
1
2

(
sin(2x)

2
+ x

)
+ c.

By making the clever substitution, we’ve avoided all of the messy side calcu-
lations that are required for an integration by parts – a real time saver, we’re
sure you’ll agree.

Finally, for those of you keen to see a derivation of the chain, product and
quotient rules, we’d recommend that you dive into Calculus I (J. Marsden and
A. Weinstein, Springer-Verlag, New York, 1999). The derivations rely on the
idea of taking a limit, but if you’re interested in taking a look, then the text
explains everything clearly.



3
Polar Coordinates

Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. Express in polar coordinates the point that is three units away from the
origin and lies on the negative x-axis.

2. Express in polar coordinates the point that is 1 unit away from the origin
(along the shortest path), lies on the Cartesian line y = x and is in the
first quadrant.

3. Consider the point (−2, 2) in Cartesian coordinates. What is this point in
polar coordinates?

4. Consider the point (−1,−√
3) in Cartesian coordinates. What is this point

in polar coordinates?

5. What is the polar form of the equation of the half-line that lies on the
Cartesian line y = x and is in the third quadrant?

6. What is the polar form of the equation of the circle that passes through
the Cartesian points (1, 0), (3, 0) and (2, 1)?
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7. What is the polar form of the equation of the straight line passing through
the Cartesian points (−2, 0) and (−2,−1)?

8. What is the general polar equation of an Archimedean spiral?

9. Consider the Cartesian point (2,−2, 2) in 3-dimensional space. What is this
point in spherical polar coordinates?

10. A murder has taken place at the origin, and a police helicopter is encircling
the crime scene. The helicopter maintains a constant height of 50 m above
the ground, and the radius of the helicopter’s circular path is 20 m. State
the equation of the helicopter’s path in cylindrical polar coordinates.

3.1 A Different Slant

Usually when working with curves, we use the Cartesian coordinate system:
that is, we define a curve by the perpendicular distance from the x-axis and
the perpendicular distance from the y-axis at any given point. You may also
have met parametric curves: these are curves where the equation that defines
the line is given in terms of x, y and some other parameter that varies between
two specified limits. There is, however, another way.

Polar coordinates use the idea that every point in a 2-dimensional plane
can be uniquely determined by just two pieces of information:

• The distance from the origin.

• The angle that the straight line joining the point to the origin makes with
the positive x-axis.

Therefore, in polar coordinates we use the variables r and θ, where r is the
distance that a given point is from the origin and θ is the angle that the line
joining the point to the origin makes with the positive x-axis. We write polar
coordinates in the form (r, θ), where θ is measured in radians unless otherwise
specified. Look at Figure 3.1, which illustrates the concept, and have a think
to make sure that you’re totally happy with the idea – including the fact that
by specifying r and θ, we uniquely determine a point on the plane.

Convention, Convention, Convention

When working with standard Cartesian coordinates in two dimensions, every-
one in the world abides by the convention that the horizontal axis is the x-axis,
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Figure 3.1

and the vertical axis is the y-axis. If we didn’t universally agree on this, and
some people put their axes a different way around, then different people would
describe points as having different coordinates! Obviously this is no help to
anyone, and so the convention has been set – and therefore must be adhered
to.

Polar coordinates have their own set of conventions too. We’ve already met
one of them – the fact that we’re always going to take the angular measurement
from the positive x-axis. We could, of course, choose any line as our initial point
of reference, but having everyone agree that the positive x-axis is the line to be
used ensures that people can agree when describing a point in polar coordinates.

Another thing to note is that angles are always measured anticlockwise. You
can see this in action in the example above, and this convention is applicable
right across mathematics. By measuring angles in this way, there is a logical
method to numbering the four areas of the plane divided up by the axes. We
call these areas quadrants, and Figure 3.2 shows how they are numbered.

This labelling is very helpful to us with polar coordinates. If we were to draw
a shape and wanted to discuss only the upper left-hand region of the shape, we
could easily refer to this as “the set of points in the second quadrant.”

Back and Forth

When we’re working with polar coordinates, we can do many of the things that
we would normally do with Cartesian coordinates without needing to change
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Figure 3.2

back and forth between the two different systems. There are, however, times
when having information about a point or a curve in the Cartesian form is
preferable to having it expressed in polar coordinates (or vice versa) and so we
need a way to convert between the two different systems. Such a conversion
requires expressing x and y in terms of r and θ. Thankfully, with a small bit of
trigonometry, this can be easily achieved (with a small bit of trigonometry, is
there anything that can’t be?). Figure 3.3 shows a point, P , expressed in the
two different systems.

By drawing in those dotted lines, it makes it clear that cos θ = x
r , and so

x = r cos θ. Similarly, sin θ = y
r , and so y = r sin θ. Therefore, given r and θ,

it’s very easy to calculate x and y. These conversions are absolutely crucial, so
commit them to memory now!

We can, of course, also convert from Cartesian coordinates to polar coordi-
nates. From the x and y that we are given, we need to somehow determine the
distance of the point from the origin, and also the angle that the line that con-
nects it to the origin makes with the positive x-axis. Finding the distance is a
job for Pythagoras and the angle is easy when we call on tan, so this conversion
isn’t difficult either. Here’s a couple of worked examples to show conversion in
action, and then we’re ready to tackle some exercises.

• Convert (2
√

3, π
3 ) from polar to Cartesian form.
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Figure 3.3

x = r cos θ

= 2
√

3 cos
π

3
=

√
3

y = r sin θ

= 2
√

3 sin
π

3
= 3

So the coordinates in Cartesian form are (
√

3, 3).

• Convert (−3, 3) from Cartesian to polar form.

· Use Pythagoras to find the distance: r =
√

(−3)2 + 32 = 3
√

2.

· Use tan to find the angle: this time we’re working in the second quadrant,
so things aren’t so straightforward. If we find the angle α that the line
joining the point to the origin makes with the negative x-axis, we can then
find θ by performing θ = π −α: if you’re not sure why this is the case, try
drawing a diagram. So tanα = 3

3 = 1, so α = π
4 and hence θ = 3π

4 .

So the coordinates in polar form are (3
√

2, 3π
4 ).
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EXERCISES

3.1.1. Express the point that is two units away for the origin and lies on
the positive x-axis in polar coordinates.

3.1.2. Express the point that is four units away for the origin and lies on
the negative y-axis in polar coordinates.

3.1.3. Convert the point (2, π) from polar to Cartesian coordinates.

3.1.4. Convert the point (10, π
4 ) from polar to Cartesian coordinates.

3.1.5. Convert the point (8, π
6 ) from polar to Cartesian coordinates.

3.1.6. Convert the point (2, 2) from Cartesian to polar coordinates.

3.1.7. Convert the point (0, 3) from Cartesian to polar coordinates.

3.1.8. Convert the point (−√
3, 1) from Cartesian to polar coordinates.

3.2 Lines and Circles

In Cartesian coordinates, describing lines and curves is probably second nature
to you now, having had it drilled in from a young age. In polar coordinates,
however, things are a little bit different. Without using trigonometry, we can get
into some trouble when we need to describe certain lines. There are, however,
some “easier” lines to look at, and so we’ll befriend those first.

Straight Lines Through the Origin

When most people first meet polar coordinates, their gut instinct is to convert
back to Cartesian form before attempting anything tricky. In order to fight
this temptation from the outset, we’re going to look at some lines that polar
coordinates tackle a darn sight better than the Cartesian system does. These
are straight lines that lie radially from the origin – often called “half lines.”

In the previous section, we already got to grips with the idea that any point
in the space can be uniquely expressed by stating its distance from the origin,
and the angle that the line that joins it to the origin makes with the positive
x-axis. But how about if we take away the constraint of stating the distance
from the origin? Then we’re just left with an angle from the positive x-axis –
and this describes a line!
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Let’s take a look at an example. If we are given the information θ = 3π
4 ,

but no value of r, then we have an infinite number of points that satisfy the
condition. Drawing all of these “points,” we arrive at Figure 3.4.

Figure 3.4

Quite impressive, I’m sure you’ll agree. In Cartesian coordinates, we would
have had to have described the line y = −x, and also the restriction that we only
want the part of the line that is in the second quadrant. In polar coordinates,
we can describe the same line by the simple statement θ = 3π

4 .

More Lines

There are, of course, other straight lines in the plane. I’m sure you’re dying to
scream “y = mx+c” right now, and so let’s take a look at those kinds of lines –
lines that have some given gradient and some intercept on the y-axis, other
than the origin. Well, once again thanks to some clever trigonometry, we can
actually express these lines quite easily in polar coordinates too. Because the
concept of “gradient” isn’t really relevant in polar coordinates, where we prefer
to think of things in terms of angles, the first job is to find some alternative
description of our line without using the idea of “how much it goes up for every
unit that it goes along.” Thankfully, all we need to do is describe another line
that our line is perpendicular to, and then we know what “steepness” we’re
going to be dealing with. But why is describing this new line, which our line is
perpendicular to, any better than describing our line in the first place? Easy:



38 3. Polar Coordinates

We can choose our perpendicular line to be a line that goes through the origin,
which we already know how to completely describe!

If we were trying to convert the line y = x + 6 from Cartesian to polar
coordinates, we could see that this line is definitely perpendicular to the line
y = −x, which can be described as θ = 3π

4 for the second quadrant. Therefore,
we know that the line we’re dealing with is perpendicular to the line θ = 3π

4 .
Figure 3.5 is a diagram of the two lines, just to clarify exactly what’s going on.

Figure 3.5

Once we have a line that our line is perpendicular to, if we also state the
point at which the two lines intersect we will have uniquely determined our
new line. We know how to do this already: It’s simply a case of describing a
single point in the plane, using polar coordinates.

Now that we have all of this information, we just need to put it together.
Without worrying too much about where the equation comes from (there’s an
explanation in the “Where Now?” section at the end of this chapter, so when
you’re comfortable with the rest of the material you may want to take a look
at that too!) we can state the formula:

r =
r0

cos(θ − θ0)
where our line is perpendicular to the line θ = θ0, and the lines intersect at the
point (r0, θ0).
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Let’s return to the example:

Find the polar equation of the line given in Cartesian form as y = x + 6.

Firstly, we can see that this line is perpendicular to the line θ = 3π
4 , or y = −x

in Cartesian form. Next, we need to find the point where these lines intersect:
it’s best to proceed in Cartesian form here. The point where the lines intersect
is precisely the point where the y values agree, and so finding this y is just a
matter of solving x+ 6 = −x, and so x = −3. Then, using y = −x, we see that
y = 3, and so the point of intersection is (−3, 3). In polar coordinates, this is
(3
√

2, 3π
4 ), using the techniques from the previous section. And there we have

it: We have our (r0, θ0); it is the point (3
√

2, 3π
4 ). Now all that’s left to do is

substitute this into the formula, giving r = 3
√

2
cos(θ− 3π

4 )
= 3

√
2 sec(θ − 3π

4 ).

Circular Logic

In addition to straight lines, polar coordinates are excellent at describing circles
too. Again, we’re going to start out by looking at the “easy” case, and then
move on to general circles.

Let’s begin by considering a circle that is centred at the origin. When we
were describing straight lines and dealing with the origin, we found that we
only needed to specify a value for θ, because we could let r vary. Hopefully,
right now you’ll be having the dawning of realisation that if we do things the
other way around (i.e., specify r and let θ vary) we get a circle of radius r,
centred at the origin! It really is that easy: We simply state the radius of the
circle that we require, and we’re done! None of this grappling with x2 and y2

that we get with Cartesian coordinates. Just specify the radius and run. If we
need a circle of radius 6 that is centred at the origin, we write r = 6 and then
go to the bar. It’s over before it even begins.

The only sad part of this story is that circles that are not centred at the
origin aren’t quite so quick to finish off. Not far off, but not quite. Recall that
the formula in Cartesian coordinates for a circled centred at (x0, y0) of radius
a is given by:

(x − x0)2 + (y − y0)2 = a2

Let’s try setting some polar substitutions into this formula:

• First, substitute x = r cos θ, x0 = r0 cos θ0, y = r sin θ and y0 = r0 sin θ0:

(r cos θ − r0 cos θ0)2 + (r sin θ − r0 sin θ0)2 = a2

• Expand the brackets on the left-hand side:

r2 cos2 θ−2r·r0 cos θ cos θ0+r0
2 cos2 θ0+r2 sin2 θ−2r·r0 sin θ sin θ0+r0

2 sin2 θ0
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• Factorise:

r2(sin2 θ+cos2 θ)−2r ·r0(cos θ cos θ0+sin θ sin θ0)+r0
2(sin2 θ0+cos2 θ0) = a2

• Use the identity sin2 θ + cos2 θ = 1:

r2 − 2r · r0(cos θ cos θ0 + sin θ sin θ0) + r0
2 = a2

• Use the identity cos(A − B) = cos A cos B + sin A sin B:

r2 − 2r · r0 cos(θ − θ0) + r0
2 = a2

This is the formula that we’re going to be using, so commit it to memory now!
If you don’t let it frighten you and just set about remembering it, you’ll be
done within a minute. The radius of the circle is a, and its centre is the point
(r0, θ0). Here is a worked example, before some exercises for you to show off
your new skills with.

Find the equation of the circle with a radius of 2 and centre with polar
coordinates (4, π

2 ).

r2 − 2r · r0 cos (θ − θ0) + r2
0 = a2

r2 − 2r · 4 cos
(
θ − π

2

)
+ 16 = 4

r2 − 8r cos
(
θ − π

2

)
+ 12 = 0

We can’t simplify this any further. Don’t fret about it – it’s perfectly correct!

EXERCISES

3.2.1. What is the equation, in polar coordinates, of the half-line that starts
at the origin and runs along the positive y-axis?

3.2.2. What is the equation, in polar coordinates, of the line that lies on
the Cartesian line y = −x and lies only in the second quadrant?

3.2.3. What is the equation, in polar coordinates, of the line that lies on
the Cartesian line y = x and lies only in the third quadrant?

3.2.4. What is the equation, in polar coordinates, of the circle that is cen-
tred at the origin and has a radius of 4?

3.2.5. Convert the line y = x + 1 from Cartesian to polar form.

3.2.6. Convert the line y = 4 − x from Cartesian to polar form.
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3.2.7. What is the polar equation of the circle of radius 1 whose centre lies
at the Cartesian point (1, 0)?

3.2.8. What is the polar equation of the circle of radius 7 whose centre lies
at the Cartesian point (1, 1)?

3.3 Moving on Up

We’ve now firmly established that polar coordinates are capable of dealing with
a whole range of tricks in two dimensions. But what about three dimensions?
Can we use what we’ve worked through so far, and extend it so that we can
describe 3-dimensional shapes and surfaces? You bet! In fact, polar coordinates
provide us with more than one way of doing so! Let’s take things up a dimension.

Cylindrical Polar Coordinates

Cylindrical polar coordinates are, unsurprisingly, based on the idea of extending
the “circular” approach in two dimensions up to a “cylindrical” one in three.
You see, if we wanted to describe any point in a 3-dimensional space, we could
do this by imagining that we were looking at it from above, from within a
cylinder. Sound weird enough for you?

The concept is actually not too hard to grasp. All that we do is describe
what we see in two dimensions through the cylinder, and then specify the
height of the point above the plane. If that sounds a little wordy, think about
it like this. Imagine that there is a light shining directly down on an opaque
point somewhere in a 3-dimensional space. Without looking at the point itself,
look at the plane that the origin is in, and use standard polar coordinates to
describe the location of the shadow that you see there. Because the light is
shining straight down, this point is the projection of our point onto the plane
containing the origin.

When we have this piece of information, simply describe how high up from
this plane the point really is. If you’ve followed the logic correctly, you’ll recog-
nise that we have uniquely determined a point in a 3-dimensional space. We
used standard polar coordinates to describe where our point lies in a circle, and
then how high up this circle needs to be lifted so that the point can be found.
In essence, we have visualised everything in terms of a cylinder. Cylindrical po-
lar coordinates are stated in the form (r, θ, t), where r and θ are the standard
polar parameters, and t is the height of the point above the horizontal plane
containing the origin.
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Figure 3.6 is a diagram to illustrate the idea. The “cylinder” is only drawn
in for reference, and the thick black line on the x, y-plane is the line joining the
origin to the projection of the point. The vertical dotted line then shows t, the
height of the point itself above the plane.

Figure 3.6

Spherical Polar Coordinates

In Cartesian coordinates, we define a point in 3-dimensional space by stating
three distances (the x, y and z coordinates). In cylindrical polar coordinates,
we state two distances and one angle. The other approach – that of spherical
polar coordinates – is to give two angles and one distance.

Firstly, let’s deal with the distance. In spherical polar coordinates, r is the
distance from the origin to the point in the 3-dimensional space. In other words,
it is the radius of a sphere, on which our point lies, that is centred at the origin.
Note that this is slightly different from the r that we worked with in cylindrical
polar coordinates: there, r represents the radius of the cylinder on which our
point lies, and so r was found using a 2-dimensional calculation (we achieved
this by taking a projection).

We find our next parameter by looking at the projection of our point onto
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the plane containing the origin, just like we did with cylindrical polar coordi-
nates. We find ϕ: the angle that the straight line joining the projection of the
point to the origin makes with the positive x-axis.

When we have these two pieces of information, however, we don’t then state
the height of the point above this plane; instead, we state the angle that the
line joining the point to the origin makes with the vertical plane. See what’s
happening? When we’re looking at the projection in the second step, we’re
looking at the angle made with the horizontal plane. Then, when we’re looking
at the actual point in the third step, we go to looking at the angle made with
the vertical plane. We measure this parameter downwards from the Cartesian
z-axis, and so it can only ever take a value between 0 and π. This is our third
parameter, θ. It might seem a little tricky to get your head around, but after
a few reads through enlightenment should dawn. Figure 3.7 should help you to
visualise what’s going on.

Figure 3.7

Spherical polar coordinates are stated in the form (r, θ, ϕ): r is the total
distance from the origin to the point, θ is the angle that the line between
the point and the origin makes with the vertical plane and ϕ is the angle
between the line joining the projection of the point and the positive x-axis.
Make sure you’re careful with the order that r, θ and ϕ are stated in. It’s
doesn’t necessarily relate to the logical order in which you work them out!
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The Eye of the Beholder

So far, this chapter has been all about expressing familiar shapes in a new way.
From now on, we’re going to look at some really cool stuff: shapes that you won’t
have met in Cartesian coordinates. In terms of “real” mathematics, the uses of
this kind of knowledge will be rather limited, but it’s still definitely worth a
look. Buckle up: We’re going to end the chapter by taking a whistlestop tour
through some of the awesome 2-dimensional shapes that can be constructed
with polar coordinates. Don’t worry too much about remembering all of this
stuff, it’s partially included for fun, because the shapes are so impressive!

• The Limaçon

The limaçon is a curve with the polar equation r = a + b cos θ if its line
of symmetry lies along the x-axis, or r = a + b sin θ if its line of symmetry
lies along the y-axis. Figure 3.8 shows a few examples of the curve with its
symmetry along the x-axis, in order to highlight how varying a varies the
curves. Varying b just varies the size.

Figure 3.8

• The Cardioid

There is a special kind of limaçon, called the cardioid, which occurs when
a = b. You’ll notice that the middle of the three diagrams above is actually
a cardioid, and perhaps this will give you a good idea as to why it is called
what it is: It looks like a heart!

• The Lemniscate

The lemniscate is a curve that looks like either a figure 8 or an infinity
sign, depending on its orientation. The equation for the horizontal (infinity
sign) version is r2 = a cos(2θ), and the equation for the vertical version is
r2 = a sin(2θ). Figure 3.9 is a diagram of the horizontal version, for your
viewing pleasure!
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aa

Figure 3.9 r2 = a cos(2θ)

• The Archimedean Spiral

It’s not surprising that making spirals in polar coordinates isn’t too diffi-
cult. The equation r = a + bθ does the job the way that Archimedes was
particularly fond of, as shown in figure 3.10.

Figure 3.10 r = a + bθ

Varying the a varies the orientation of the spiral, and varying the b varies
how “tightly” the spiral is wound.

If you’re lucky enough to have access to a graphical calculator, please don’t
fight the urge to go and play with the parameters on all of these curves, and
see what shapes you can make!

EXERCISES

3.3.1. Express the Cartesian point (1, 1, 1) in cylindrical polar coordinates.
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3.3.2. Express the Cartesian point (0, 2, 2) in spherical polar coordinates.

3.3.3. What is the equation of a vertical semicircle of radius 1, centred
at the origin, and whose projection onto the x, y-plane lies on the
Cartesian line y = x in the first quadrant? Give your answer in
spherical polar coordinates.

3.3.4. What is the equation of a horizontal circle of radius 4 and a constant
height of 3, whose projection onto the x, y-plane is centred at the
origin? Give your answer in cylindrical polar coordinates.

3.3.5. What is the equation of a horizontal circle of radius 3 and a constant
height of −3, whose projection onto the x, y-plane is centred at the
origin? Give your answer in spherical polar coordinates.

3.3.6. What is the general polar equation of the shape that looks like the
infinity sign?

3.3.7. What is the general polar equation of the shape that looks like a
figure 8?

3.3.8. What is the general polar equation of a limaçon?

3.3.9. What is the general polar equation of a cardioid?

3.3.10. What type of shape is defined by an equation of the form r = a+bθ?

Where Now?

In this chapter we’ve dealt mainly with how points and shapes are expressed
using polar coordinates. I’m sure you’ll agree that simply being able to express
a shape in Cartesian coordinates is far from being an expert in their use, and
so naturally there is a lot more to look at with polar coordinates than we
have covered here. Using changes of coordinate systems is a vital tool in many
calculus-based problems.

In physics, one of the most useful applications of polar coordinates comes
when dealing with surfaces, particularly in calculating something called flux.
Flux is the rate that a given vector field “cuts through” a surface – you may
well have heard the term when dealing with magnetism, where flux describes
magnetic field density and the area that it is acting upon. When we mathemat-
ically calculate flux, it is necessary to parameterise (i.e., describe in a specific
way) surfaces before we begin any calculations, and the best route to parame-
terising tricky surfaces often involves the use of cylindrical or spherical polar
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coordinates. You’ll learn lots more about this, and many of the other uses of
polar coordinates, in your university studies.

Vector Calculus (J. Marsden and A. Tromba, W.H. Freeman and Company,
2003) is an excellent introduction to the many ways in which polar coordinates
(both in two and three dimensions) can help us solve calculus-based problems
with shapes that aren’t easily dealt with in the Cartesian system. If you had
some trouble getting to grips with cylindrical or spherical polar coordinates,
there’s a great exploration of both in Vector Calculus, along with some inter-
esting notes about the history of their development.

All that remains is, as promised, the proof of the polar coordinates formula
for a straight line that doesn’t pass through the origin. We’ll be using Figure
3.11, where l is the line we’re trying to describe, l0 is the straight line through
the origin which is also perpendicular to l, and l1 is any straight line passing
through the origin.

Figure 3.11

• Pick l0: the line through the origin that is perpendicular to l. This means
that l0 has the equation θ = θ0.

• Find the point at which l and l0 intersect. This point is the point (r0, θ0).

• Note that any point on l can be expressed as (r, θ).
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• l1 is any line that passes through the origin, so the angle between l1 and l is
either (θ − θ0) or (θ0 − θ), depending on where we chose l1 to be.

• Using standard trigonometry we arrive at either r cos(θ − θ0) = r0 or
r cos(θ0 − θ) = r0 (again depending on where we chose l1 to be).

• Because cos is an even function [i.e., cos(x) = cos(−x)], we have that cos(θ−
θ0) = cos(θ0 − θ). So it doesn’t matter where we chose l1 to be; we end up
with the same equation.

• Rearranging what we got above yields r = r0
cos(θ−θ0)

.

That’s all, folks!
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Complex Numbers

Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. What do each of N, Z, Q, R and C mean?

2. Solve the equation x2 = −81.

3. Solve the equation x2 − 6x = −10.

4. Simplify (7 + 3i) − (6 − 2i).

5. Simplify (3 + 2i)(4 − 5i).

6. Simplify 6+2i
3+5i .

7. Simplify 4+i
−1−3i .

8. Draw (7 + i) and (−4 + 3i) on an Argand diagram (also known as “the
complex plane”).

9. Express 1 +
√

3i in reiθ form.

10. By first expressing (−√
3− i) in reiθ form, find (−√

3− i)4 in a + bi form.



50 4. Complex Numbers

4.1 Numbers

As a student in school, ending a solution of equations question by writing “no
real roots” always seemed a bit of a disappointment. All of that work getting
there, only to be stopped in our tracks by the problem that no real number,
when squared, will yield a negative. But look again carefully at what we write:
“No real roots.” In the number system that we are using to answer the question,
the real numbers, we can’t find a solution. But what if there were some other
number system – something new entirely – that allowed us to conquer this
difficulty?

The most basic set of numbers is the natural numbers, N. These are the
positive, whole numbers 1, 2, 3, . . . With these numbers, we can undertake the
useful tasks of addition and multiplication: whenever we add or multiply a
natural number with another, we get a natural number as a result.

But is addition and multiplication of whole, positive numbers enough? No,
of course it isn’t: let’s look at subtraction. The simple subtraction 7 − 12 does
not have a “solution” if we restrict ourselves to natural numbers. To overcome
this problem, we have a set of numbers called the integers, Z. These are the
positive and negative whole numbers, and 0. Working with the integers, we can
be sure that we can undertake addition, multiplication and subtraction with
confidence.

Of the four basic mathematical operations, lastly comes division. While the
integers will deal with exact division such as 8

8 or −6
3 , anything with a remainder

after division is not catered for by Z. For this reason, we have the set of rational
numbers, Q (the choice of the letter Q relates to the word “quotient,” stating
that all rational numbers can be expressed as a fraction). The rational numbers
are very useful, and in everyday life the rational numbers is the set of numbers
that serve the general public very well.

For those few of us that require a little bit more, we have the real numbers,
R. The reals are the rational numbers with some extra “snazzy bits” thrown
in: things like π and e, and also things like

√
2. We need to use analysis, which

you’ll study at great length at university, in order to define the real numbers
fully. There’s an introduction to analysis in the last two chapters of this book.

And so, for a reasonable range of mathematics, the reals are adequate. They
do everything we’d ever want to do, up to a point. Here’s a quick diagram to
illustrate the number systems we’ve looked at so far:

N
Subtraction−→ Z

Division−→ Q
“Analysis”−→ R

But wait: there’s more.
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The Magic i

As we have seen, every “bigger” set of numbers is used to accommodate our
need for more and more complicated calculations. So why stop at the reals?
We know that solving

√−1 causes problems in the reals, so again we’re going
to need a “bigger” set of numbers: the complex numbers, C.

Simply by defining
√−1 = i, we overcome most of the problems we have

with reals. Now, what is
√−16? Well,

√−16 =
√

16
√−1 = 4i. Notice, however,

that if in the set of complex numbers we didn’t include all the real numbers as
well as i, we wouldn’t be able to solve something like

√
4. For this reason, we

have:

A complex number is of the form a+bi, where a and b are real numbers
and i =

√−1.

Have a good read of that and remember it. You’ll be using that from day one
at university, and you’ll use it for the rest of your mathematical career. The a
part of the number is called the “real” part, and the b part of the number is
referred to as the “imaginary” part.

The a + bi form is really helpful when we use our old friend, the quadratic
formula:

−b ±√
b2 − 4ac

2a

Note that we can write this as −b
2a ±

√
b2−4ac
2a , which will always yield a result

in the form a + bi. The b might be 0, but it’s still in the a + bi form, so never
again will we need to write “no real roots”!

Here are a couple of examples:

• Solve x2 + 25 = 0

x2 = −25

x = ±√−25

= ±
√

25
√−1

= ±5i
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• Solve x2 − 4x + 5 = 0

Use the quadratic formula: x =
4 ±√

16 − 20
2

=
4
2
±

√−4
2

= 2 ±
√

4
√−1
2

= 2 ± i

EXERCISES

4.1.1. What do α, β, γ and δ represent in this diagram?

N
α→ Z

β→ Q
γ→ R

δ→ C

4.1.2. What is i2?

4.1.3. Fill in the blanks:

A complex number is of the form . . . where . . . and . . . are
. . . numbers and . . . =

√−1.

4.1.4. Solve the equation x2 = −100.

4.1.5. Solve the equation x2 + 64 = 0.

4.1.6. Solve the equation x2 − 2x + 2 = 0.

4.1.7. Solve the equation x2 + 4x + 20 = 0.

4.1.8. Solve the equation 8x2 − 4x + 1 = 0.

4.1.9. Solve the equation x2 − 2x + 3 = 0.

4.1.10. Solve the equation 3x2 − 4x = −3.

4.2 Working with Complex Numbers

Now that we’ve seen where complex numbers come from, and know that they’re
of the form a + bi, where a and b are real numbers and i =

√−1, the next
thing to look at is how we work with our new best friends.
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Addition and Subtraction

You’ll be delighted to know that addition and subtraction is easy. You see,
i =

√−1, and so we’ll never affect the imaginary part of the number by adding
or subtracting the real parts, and we’ll never affect the real part of the number
by adding or subtracting the imaginary parts (remember, when a complex
number is written in the a+bi form, a is the “real part” and b is the “imaginary
part”). This means that when we add or subtract complex numbers, we just
deal with the real part and the imaginary part separately, like this:

• Add (3 + 6i) to (5 + 9i)

(3 + 6i) + (5 + 9i) = (3 + 5) + (6i + 9i)

= 8 + 15i

• If x = (7 − 3i) and y = (6 + 2i), find x − y.

(7 − 3i) − (6 + 2i) = (7 − 6) + (−3i − 2i)

= 1 − 5i

Very nice indeed, I’m sure you’ll agree!

Multiplication

Multiplication really isn’t too bad, so long as you take care. The key fact that
we will be using is i2 = −1, because i =

√−1. So long as we keep that in mind,
we shouldn’t have too many problems.

• Simplify (6 + i)(4 + 3i).

(6 + i)(4 + 3i) = 24 + 18i + 4i + 3i2

= 24 + 22i + 3i2

= 24 + 22i − 3

= 21 + 22i

• Simplify (3 + i)(4 − 2i).

(3 + i)(4 − 2i) = 12 − 6i + 4i − 2i2

= 12 − 2i − 2i2

= 12 − 2i + 2

= 14 − 2i
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Division

Division is the only time when we need to be a bit more cunning. The process is
very similar to how we work with square roots in reals: the key is that we don’t
want any funny business going on in the denominator. If we could always get
the denominator to be a real number, we’d be laughing. Lucky for us, there’s
a trick that lets us do exactly that.

A complex conjugate is a complex number in the a + bi form, but with the
sign of the imaginary part changed. That might not be too clear in words, so
here are some examples:

Complex Number Complex Conjugate
a + bi a − bi

a − bi a + bi

−a + bi −a − bi

−a − bi −a + bi

Make sure that you’ve noticed that the sign before the real part doesn’t change,
only the one on the imaginary part.

Let’s take a look at what happens if we multiply a complex number by its
complex conjugate:

(a + bi)(a − bi) = a2 − abi + abi − b2i2

= a2 + b2

Do you see why this is useful? There’s no i term anymore. Now let’s see how
we can apply this in the division of complex numbers:

• Find (3+2i)
(5−3i) .

To try to do this division blindly (without our neat trick) is futile. We’re going
to need complex conjugates to take this one down, so let’s see how we’re going
to proceed.

Remember our motto: we don’t want any funny business going on in the
denominator. So let’s use complex conjugates to knock that denominator into
shape.

You might have guessed this by now: we’re going to multiply top and bottom
of the fraction by the complex conjugate of the denominator:

(3 + 2i)
(5 − 3i)

=
(3 + 2i)(5 + 3i)
(5 − 3i)(5 + 3i)

Now, simplifying each of the numerator and the denominator independently:
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(3 + 2i)(5 + 3i)
(5 − 3i)(5 + 3i)

=
15 + 9i + 10i + 6i2

25 + 15i − 15i − 9i2

=
15 + 19i − 6

25 + 9

=
9 + 19i

34

At this point, we’re done! The number is in the complex form: it is 9
34 + 19

34 i.
With some careful work and the awesome trick, we have the answer.

One final example here before a jumbo set of exercises. You’ll definitely
need these skills early on in your degree, so make sure that you work through
them all!

• Find (4−6i)
(−5+i) .

(4 − 6i)
(−5 + i)

=
(4 − 6i)(−5 − i)
(−5 + i)(−5 − i)

=
−20 − 4i + 30i + 6i2

25 + 5i − 5i − i2

=
−26 + 26i

26
= −1 + i

EXERCISES

4.2.1. Simplify (6 + 3i) + (4 + 5i).

4.2.2. Simplify (7 − 3i) + (2i).

4.2.3. Simplify (3 − 2i) − (3 − 2i).

4.2.4. Simplify (4 + i) − (7 − 11i).

4.2.5. Simplify (12 + 3i) + (3 − 12i).

4.2.6. Simplify (6 + 3i)(6 + 3i).

4.2.7. Simplify (7 − i)(3 + 2i).

4.2.8. Simplify (18 + 3i)(1 − i).

4.2.9. Simplify (12 − i)(3 + 2i).

4.2.10. Simplify (6 + 2i)(3 + i)(4 − i).

4.2.11. Simplify 6+2i
2 .
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4.2.12. Simplify 3+2i
1+i .

4.2.13. Simplify 3+5i
2−2i .

4.2.14. Simplify 10−i
7+3i .

4.2.15. Simplify −3−i
−2+i .

4.2.16. Simplify (−2+i
2−i )( 4+i

−1+i ).

4.3 Tips and Tricks

As well as the standard a + bi form of a complex number, there are a few
“tricks” that we can use in order to cut out some of the lengthy calculations
that we occasionally have to do.

Argand Diagrams

We need to acquaint ourselves with Argand diagrams (sometimes known, less
imaginatively, as “the complex plane”). By now, you’ll be very familiar with
the standard (x, y) plane. This plane is useful to us, because it lets us plot
a piece of data with two parts as a single point in the space. Well, our new
buddies complex numbers are each a single piece of data with two parts (the
real part and the imaginary part), so why not plot them in a similar way?

Notice first that to make later work clearer, we’re not going to plot complex
numbers as a single dot. Instead, we’re going to draw a straight line from the
origin out to that point. Here’s an example:

Plot (3 + 2i), (−4 + 3i) and (−1 − 4i) on an Argand diagram.

Figure 4.1 shows how this is done. Also notice which way around the axes
are labelled: The real part is on the x axis, the imaginary part is on the y-axis.

The reiθ Form

In order to follow this next bit, you’re going to need to be up to speed with
the basic idea of polar coordinates. If you missed that chapter, it’s pretty much
necessary to go back there and work through it. Doing so will make what follows
much more logical for you.
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Figure 4.1

Recall that as well as defining a point in the plane by its (x, y)-co-ordinates,
we can also uniquely determine it by its distance from the origin and the angle
that it makes with the positive x-axis. Now, for a point plotted on an Argand
diagram, expressing it in this polar form (called “the reiθ form”) is very helpful
indeed. Here’s an example:

Plot 2 + 2i on an Argand diagram. Express 2 + 2i in reiθ form, and
hence find (2 + 2i)6.

Obviously, multiplying out (2 + 2i)(2 + 2i)(2 + 2i)(2 + 2i)(2 + 2i)(2 + 2i) (like
we would need to if it weren’t for the trick we’re about to explore) is not too
much fun. Figure 4.2 shows the plot the question asked for.

To go into polar coordinates, we need to find how far this point is from the

Figure 4.2
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origin and the angle it makes with the positive x-axis.
To get the distance, let’s give Pythagoras a call: take a glance at Figure 4.3.

Figure 4.3

Pythagoras seems pretty confident that 2
√

2 is the distance from the origin.
To get the angle from the positive x-axis (labelled “real” in an Argand

diagram), trigonometry seems as good a weapon as any: tan α = 2
2 , and hence

α = π
4 . So we can express our point as being 2

√
2 away from the origin, and π

4

from the positive x-axis.
At this point, it’s necessary to have to ask for your trust: we’re going to

state something without proof. The reasons are twofold: firstly, the trick we’re
learning is just that – a handy tool to reduce tedious calculation. We aren’t
doing this for the theory, so learning to do it is what we’re after, not learn-
ing where it’s from. The second reason is much more important: When your
university lecturer proves why we can do what we’re about to do, they’ll no
doubt take a quick detour to a special case: eπi. Some people find what happens
in this special case unremarkable, but to many – ourselves included – the eπi

moment is something like an artist seeing the Mona Lisa for the first time: a
mind blowing, perhaps life-changing experience where everything you’ve ever
learned suddenly seems worthwhile. Anyway, enough sentiment, on with the
maths. Like we say, trust us on this one:

We make the reiθ form by setting our distance as the r and our angle
as the θ.

This means that after we’ve found the distance and angle, we’re actually done.
So the 2 + 2i example becomes 2

√
2ei π

4 .
Now, upon gut reaction, this seems far nastier than simply “2+2i.” But look

at what we have here: 2
√

2ei π
4 uniquely determines our 2+2i. Now look over the

last part of the question: “and hence find (2 + 2i)6.” Our 2
√

2ei π
4 is equivalent

to 2+2i, so rather than writing (2+2i)(2+2i)(2+2i)(2+2i)(2+2i)(2+2i), we
can write (2

√
2ei π

4 )6, which is simply (2
√

2)6(ei 6π
4 ), which is 512ei 3π

2 . Now, if
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we need our answer in the a+bi form again, we’re just looking for a point on an
Argand diagram that is 512 away from the origin, and at an angle of 3π

2 from
the positive x-axis. Visualising where this would lie on an Argand diagram, we
see that our answer is (0 − 512i), or simply −512i. I’m sure you’ll agree that
this method is a lot less painful than a massive binomial onslaught!

One more worked example, then your exercises await:

Use the reiθ form of complex numbers to find (
√

3 + i)12.

Let’s first find the length of the line:√
(
√

3)2 + 12 = 2

Now, let’s find the angle from the positive x-axis:

tanα =
1√
3

α =
π

6

So our reiθ form is 2e
π
6 i. Hence we require (2e

π
6 i)12 = 4096e2πi.

We know an angle of 2π means our point lies exactly on the positive x-axis,
and so (

√
3 + i)12 = 4096 (there is no imaginary part to our answer).

EXERCISES

4.3.1. Draw an Argand diagram, and represent these points on it:
α = (7 + i), β = (3 − i), γ = (−1 + 3i), δ = (−3 − 3i).

4.3.2. How far is (3 + 2i) from the origin when drawn on an Argand
diagram?

4.3.3. How far is (−2 − i) from the origin when drawn on an Argand
diagram?

4.3.4. What angle does 2i make with the positive x-axis when drawn on
an Argand diagram?

4.3.5. What angle does (−3−3i) make with the positive x-axis when drawn
on an Argand diagram?

4.3.6. Express (−2 + 2i) in reiθ form.

4.3.7. Express (−√
3 + i) in reiθ form.

4.3.8. By first expressing (−3 + 3i) in reiθ form, find (−3 + 3i)4 in a + bi

form.
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Where Now?

Complex numbers are a vital tool in all sorts of mathematics, and throughout
your career as a mathematician you’ll see them all over the place. You’ll be using
them to solve differential equations; you’ll be using them to find eigenvalues
(explored later in this book!); later in your degree you’ll be studying their
properties as a ring. . . the list goes on.

If you’re interested in complex numbers and how they work, this is definitely
an area that you can brush up on before going to university. In this chapter
we worked with the reiθ form, but there’s also the very useful r(cos θ + i sin θ)
form too: you can find out where this comes from and how to use it in A Con-
cise Introduction to Pure Mathematics (M. Liebeck, Chapman and Hall/CRC,
2000).

If you like the idea of complex numbers in the abstract sense (rather than
simply what we can use them for), you may also be interested in quaternions. In
calculations they work in a similar way to complex numbers, but they have a few
more complications to consider: The Foundations of Mathematics (I. Stewart
and D. Tall, Oxford University Press, 1977) is a great book to delve into if
you’d like to know a little more about this topic (but be warned, working with
quaternions gets quite difficult quite quickly!).
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Vectors

Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. Find the norm of the vector (3, 8, 3, 3, 3).

2. Given that the vector u = ( 1
6 , 1

4 , x, 1
3 ) is a unit vector, find the value of x.

3. If m = (3, 7, 5) and n = (8, 1, 3), find 3m − 2n.

4. If y = (3, 7, 1, 3), find ||y||y.

5. Let u = 8i + 2j + 6k and v = 9i + 5j + k. Find 2u + 3v.

6. Find (1, 6, 3, 8) · (4, 2, 6, 1).

7. Let a = (1, 4, 3), b = (2, 4, 1) and c = (7, 1, 0). Find a(b · c).

8. Find the angle between the vectors (2, 2, 1) and (2, 3, 6). Leave your answer
in a trigonometric form.

9. Find the cross-product of the vectors (2, 3, 4) and (1, 3, 5).

10. Find ((2, 2, 7) × (3, 7, 8)) · (5, 6, 7).
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5.1 Reinventing the Wheel

From a reasonably early stage in “serious” mathematics, vectors play a central
role. In this chapter, we’re going to look at lots of different uses of vectors, and
learn some tricks that we can employ when we are working with them. They
should be a relatively familiar concept, but first let’s quickly review some of
the crucial tools in our conquest to solve vector problems.

Vectors and Euclidean n-space

You may have met vectors in R2 before – that is to say, vectors in the form
(a, b), where a and b are both real numbers. A vector like this can be thought
of as the line, with direction, from the origin to the point P , where P = (a, b).
Therefore, this vector can be written as 	OP , as well as the standard form of
(a, b). The same idea can be employed for vectors in R3 (3D space).

For vectors in Rn, where n > 3, it is not possible to think visually (don’t try,
it will give you headaches), but these vectors can be written and manipulated
in the same way as vectors in R2 and R3. Here’s a quick definition that will
make life easier when we proceed:

The set Rn (that is the set of vectors of the form (x1, x2, x3, . . . , xn),
where x1, x2, x3, . . . , xn are all real numbers) is called Euclidean
n-space.

Unsurprisingly, Euclid was the first person to widely use the notion of a vector
in this way!

Bits and Pieces

A few standard definitions:

• A vector u = (u1, u2) is equal to another vector v = (v1, v2) if and only if
u1 = v1 and u2 = v2: that is, their components are equal.

• The zero vector in R2 is simply 0 = (0, 0): the vector containing 2 0s. Note
that 0 is not equal to the number 0.

• The length of a vector in R2 is found using Pythagoras’ theorem, so for a
vector v = (v1, v2), the length is

√
v2
1 + v2

2 .

Now, most of your previous work on vectors was probably only in R2 or R3,
but can we extend these definitions for use on all vectors in Euclidean n-space?
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Let’s try to adapt what we already have for R2.
In R2, we said that we declare vectors to be equal if their two components

are equal. To extend this idea to Euclidean n-space is straightforward – we’ll
just demand that two vectors can only be equal if all of their components are
equal. So the vector (3, 7, 9, 6) is only equal to the vector (3, 7, 9, 6), and it
would be impossible for the vector (7, 8, 3, 2) to be equal to a vector with five
components, because all of the components cannot be equal.

In R2, the 0 vector is (0, 0). In R3 it is (0, 0, 0). It makes good logical sense,
then, to define the 0 vector in Euclidean n-space as the vector with n 0s.

The only real difficulty with all of these definitions comes with length. In
R2, we can certainly find the “length” of any vector by Pythagoras – we can
extend this idea to R3 too. But what about beyond that? We already know
that we can’t “visualise” R4 because the world that we know is 3-dimensional.
Suddenly, the notion of “length” is no good to us.

Despite this, finding the root of the sum of the squares (quite a mouthful!)
is still useful to us in R4 and beyond, so we have a different name for it: the
Euclidean norm – we’ll just write “norm” for short, but there are plenty of
other kinds of norm out there that you’ll meet during your degree studies. This
norm is denoted by double vertical lines either side of the vector, and is defined
as:

||v|| =
√

v2
1 + v2

2 + v2
3 + · · · + v2

n.

From now on, even in R2 and R3, we’re going to call this quantity “norm,” not
“length.” Here’s a quick example:

Find the norm of the vector v = (2, 5, 6, 2, 10).

||v|| =
√

22 + 52 + 62 + 22 + 102

=
√

4 + 25 + 36 + 4 + 100

=
√

169

= 13

Here is a helpful idea that we can get from computing the norm:

A unit vector is a vector that has a norm equal to 1.

So v is a unit vector if and only if
√

v2
1 + v2

2 + v2
3 + · · · + v2

n = 1. Unit vectors
turn out to be helpful in all kinds of sticky situations in degree mathematics,
so it’s a good idea to learn this definition now!
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Vector Addition and Scalar Multiplication

When dealing with vectors, we often also need to deal with ordinary numbers
at the same time. We use the word scalar to mean “a number.” We’re going
to take a look at vector addition and scalar multiplication, but these processes
should already be reasonably familiar in R2 and R3, so let’s jump straight to
working in Euclidean n-space.

For vectors u = (u1, u2, u3, . . . , un) and v = (v1, v2, v3, . . . , vn), and some
scalar λ, we define:

• u + v = (u1 + v1, u2 + v2, u3 + v3, . . . , un + vn).

• u − v = (u1 − v1, u2 − v2, u3 − v3, . . . , un − vn).

• λu = (λu1, λu2, λu3, . . . , λun).

So, for example, if u = (1, 4, 2, 8, 7) and v = (8, 3, 6, 2, 7), then:

u + v = (1 + 8, 4 + 3, 2 + 6, 8 + 2, 7 + 7)

= (9, 7, 8, 10, 14)

u − v = (1 − 8, 4 − 3, 2 − 6, 8 − 2, 7 − 7)

= (−7, 1,−4, 6, 0)

4u = (4, 16, 8, 32, 28)

Notice that vector addition (and subtraction) is only defined for when we have
two vectors with the same number of components – otherwise, there is nothing
that we can do with them.

It is sometimes helpful to think about vectors in R2 geometrically (i.e., in
terms of pictures). By doing this, we can see the ideas of vector addition and
scalar multiplication at work. Figure 5.1 shows two vectors, u and v, and Figure
5.2 shows the result of undertaking u + v.

In vector addition, we can see that the final vector can be found by “com-
pleting the parallelogram”: the sum of the two vectors is simply the diagonal
of the parallelogram that they form when placed end to end.

Vector subtraction can also be performed geometrically: Figure 5.3 shows
the result of u − v. In vector subtraction, if we imagine “reversing” the di-
rection of the vector that we’re subtracting, we again find that the result of
the subtraction can be seen by placing the vectors end to end, and finding the
vector from the origin to the endpoint.

Figure 5.4 shows result of 2v. Here we find the result by simply drawing
the same vector, end to end, twice!
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Figure 5.1 Figure 5.2

Figure 5.3 Figure 5.4

Important Properties

In most of the mathematics that we do, we take certain things for granted.
Before university we are often careless about stating what things we are as-
suming when we make calculations, and this perhaps misguides students into
wrongly believing that they aren’t assuming anything at all. Think about the
pair of real numbers, m and n. We often use the fact m + n = n + m, but it
actually turns out to be something that we call an axiom: we use this fact all
over the place, but we can’t actually prove it – instead, we have to define that
our numbers behave in this way. This is exactly what an axiom is: something
that we insist a certain set of numbers does, because we need the result to be
true. In the case of m + n = n + m, we’ll never find a counterexample because
we have defined that the numbers we use behave in this manner.

There is a set of axioms that we need when we work with vectors. Remember
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them well, because if you don’t have them listed as part of the syllabus when
you start your course on linear algebra, you probably missed a lecture. Sleep
at night next time – you have better dreams that way.

Let u, v and w be vectors in Rn, and λ and μ be scalars. Then the axioms
that we need are as follows:

1. u + v = v + u.

2. (u + v) + w = u + (v + w).

3. u + 0 = u.

4. u + (−u) = 0.

5. (λμ)u = λ(μu).

6. (λ + μ)u = λu + μu.

7. λ(u + v) = λu + λv.

8. 1u = u.

9. (−1)u = −u.

10. 0u = 0.

Remember to keep an eye out for the difference between 0 and 0.

EXERCISES

5.1.1. Find the norm of the vector (−5, 6,−2, 9,−5, 5).

5.1.2. What value of x makes ( 2
13 , 5

13 , x, 2
13 , 10

13 ) a unit vector?

5.1.3. Find (3, 6, 2, 4) + (−2, 8, 3,−9).

5.1.4. Find (5,−2,−8, 3, 8) − (4,−3, 5,−7,−5).

5.1.5. Find 5(4, 7, 3, 8).

5.1.6. Find 3(2, 5, 6) − (8, 2, 9).

5.1.7. Find 2(−5, 8, 4, 2) + 8(−8, 4, 6,−3).

5.1.8. Find 10(5, 7, 2) − 3(−2, 5, 2) + (7, 3, 9).

5.1.9. Find ||(6, 2,−9)||(4, 2, 7).

5.1.10. Let u = (2, 4,−4, 6) and v = (2,−1, 3,−2). Find ||u||u − ||v||v.
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5.2 A Different Approach

Sometimes it is helpful to think of vectors in a more algebraic form. All vectors
in R2 can be expressed in terms of the two vectors i and j, where i = (1, 0) and
j = (0, 1). The vector v = (a, b) can be simply written v = ai + bj. A specific
example of this might be a question that asks you to write the vector u = (6, 2)
in the i, j form. The answer to this would be u = 6i + 2j. Not too tough, is it?

Similarly, vectors in R3 can be written in terms of the i, j and k vectors,
where i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1). So in R3, the vector m =
(a, b, c) can be written as m = ai + bj + ck, and the vector n = (1, 8, 5) can be
written as n = i + 8j + 5k.

Having vectors in this form makes addition and scalar multiplication no
harder. For example, if a = 8i+2j+9k and b = 3i−9j+3k, then we can work
like this:

a + b = (8 + 3)i + (2 − 9)j + (9 + 3)k

= 11i − 7j + 12k

3a = (3 × 8)i + (3 × 2)j + (3 × 9)k

= 24i + 6j + 27k

For those of you that prefer to think in algebraic forms, this might seem
a bit more intuitive than how we looked at vectors in the previous section, as
now we simply collect the coefficients in i, j and k separately, just as if we were
working with a standard equation in three unknowns.

Totally Dotty

Although many people encounter the dot product before university, we’re going
to approach the idea in Euclidean n-space. Here’s the definition:

If u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn), then u · v = u1v1 +
u2v2 + · · · + unvn.

If you haven’t met the dot product before, make sure you take extra care with
that definition. Notice that what we get from it is not a vector: we’re summing
lots of scalars, so we’re going to get just a scalar as the result. If you prefer
to think of this sort of process in words, then we are multiplying corresponding
components, then summing the results. Here’s an example:

Find u · v, where u = (2, 7, 5, 9, 1) and v = (7, 2, 6, 4, 4).
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u · v = (2 × 7) + (7 × 2) + (5 × 6) + (9 × 4) + (1 × 4)

= 14 + 14 + 30 + 36 + 4

= 98

Properties of Dotting

Here are five helpful properties to bear in mind when working with the dot
product, which hold true for all vectors u,v and w and scalars λ:

1. u · v = v · u.

2. (λu) · v = λ(u · v) = u · (λv).

3. u · (v + w) = u · v + u · w.

4. u · 0 = 0.

5. u · u = ||u||2.

Angles Between Vectors

There is a very useful identity that we can use to find the angle between two
vectors in Euclidean n-space. This rule is crucial, so remember it well:

u · v = ||u||||v|| cos θ

So long as we know what u and v are, the only unknown in this identity is θ,
so we can definitely find it. Here’s an example:

Find the angle between the vectors u = (0, 3, 0) and v = (1, 1,
√

2).

We know the rule is u · v = ||u||||v|| cos θ, so rearranging we get:

cos θ =
u · v

||u||||v||
We first need to find the values of u · v, ||u|| and ||v||:
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u · v = (0 × 1) + (3 × 1) + (0 ×
√

2)

= 0 + 3 + 0

= 3

||u|| =
√

02 + 32 + 02

=
√

9

= 3

||v|| =
√

12 + 12 +
√

2
2

=
√

4

= 2

This means that:

cos θ =
3
6

=
1
2

θ =
π

3

There’s one final definition to round this section off:

Two vectors are said to be orthogonal if the angle between them is π
2 .

Now note that if θ = π
2 , then cos θ = 0, so for any two vectors u and v to be

orthogonal, we must have u·v = 0. Thinking about the dot product, this is quite
helpful in that if we have two nonzero vectors whose dot product is 0, we know
for certain that these vectors must be orthogonal, because u·v = ||u||||v|| cos θ,
and ||u|| and ||v|| will never equal 0 when u and v are nonzero vectors, so cos θ

must equal 0. When you’re happy with the logic here, you’re ready to tackle
the next batch of exercises:

EXERCISES

5.2.1. Write (2, 7, 3) in the i, j,k notation.

5.2.2. If u = 8i − 2j − 6k and v = 3i − 9j + 4k, find u + v and 5u.

5.2.3. Find u · v, where u = (4, 2, 7, 2, 6, 4) and v = (9, 0, 2, 2, 1, 8).

5.2.4. Find u · v, where u = (8, 2, 6) and v = (9, 2, 5).
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5.2.5. Let u = (2, 7, 4), v = (8, 2, 1) and w = (1, 5, 4). Find u · (v + w).

5.2.6. Let u = (2, 1, 7), v = (7, 2, 9) and w = (2, 1, 4). Find (u · v)w.

5.2.7. Find the angle between the vectors (3, 4) and (5, 12). Leave your
answer in a trigonometric form.

5.2.8. Find the angle between the vectors (6, 8) and (8, 15). Leave your
answer in a trigonometric form.

5.3 The Cross Product

Imagine now that we have two vectors, and we need to find a third vector that
is orthogonal to both of these (remember, in three dimensions this is perfectly
sane!). Rather than having to try to visualise things and fumble around in the
dark, we have a sneaky tool.

The cross product is one of those rare things in mathematics that is not
universally applicable. You see, there is a strict constraint on it: we can only
use the cross product when we have two vectors in R3, and we wish to find
a third vector that is orthogonal to both. As such, it’s quite a limited tool,
but it is still very handy – plus there is the added bonus that when we come
on to working with matrices, we can actually employ the same computational
procedure and get a very useful result. The notation for “the cross product” is
simply a “times” sign, so a × b is “the cross product of a and b.” Performing
a × b (or, indeed, b × a) will give us a vector orthogonal to both a and b.

Anyway, here’s how to do it: because it’s simply a tool to be used, don’t
worry about where it comes from, just learn the steps and be able to apply
them.

1. Take your two vectors in R3 and write them out one beneath the other.
So if we were finding the cross product u × v, where u = (a, b, c) and
v = (d, e, f), we’d start by writing:

(a, b, c)

(d, e, f)

Note that it’s important that the first vector in the cross product is written
on top.

2. Now, we’re going to view what we have as three separate columns:
(

a
d

)
,(

b
e

)
and

(
c
f

)
.
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3. Imagine “ignoring” the first column (i.e.
(

a
d

)
). We’re left with

(
b
e

)
and

(
c
f

)
.

4. With the remaining columns
(

b
e

)
and

(
c
f

)
, we do the calculation “top of

first times bottom of second minus top of second times bottom of first.”
In our algebraic example, this means computing bf − ce. This is the first
component of our solution vector.

5. Now, to get the second component, we follow the same idea with only a
minor change: Ignore the middle column instead of the first, and of what’s
remaining do “top of first times bottom of second minus top of second
times bottom of first.” Also, with this second component, we want minus
the result we get from this calculation. In our algebraic example, this gives
us −(af − cd).

6. Finally, we’re going to take the positive result of our calculation when
ignoring the third column as the third component of the solution vector.
This is ae − bd.

7. We now have our solution vector: (bf − ce,−(af − cd), ae − bd).

If you don’t remember the process and just memorise this result then you’re
not really losing out on too much. Have a couple of reads through, make sure
that you know what the result should be, and then head off into the final set
of exercises.

EXERCISES

5.3.1. Find the cross product of (3, 2, 5) and (2, 7, 5).

5.3.2. Find a vector that is orthogonal to both (2, 1, 5) and (3, 2, 1).

5.3.3. Find a vector that is orthogonal to both (1, 4, 6) and (2, 2, 5).

5.3.4. Find a vector that is orthogonal to both (4, 6, 2) and (5, 1, 3).

Where Now?

The study of vectors leads very naturally into the study of matrices, which it’s
quite possible that you’ll never have met before. You’ll be much better prepared
to tackle matrices if you’re very confident about what’s going on with vectors.
Vector Calculus (J. Marsden and A. Tromba, W.H. Freeman and Company,
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2003) is a great source of more examples to practice on if you feel that you
want to develop your skills a little further.

Also, vectors are very important in their own right. They allow us to look
at lots of pieces of data as a single vector, and so can greatly cut down our
calculation work. In addition to all of this, there are lots of little “hidden
benefits” to some of the skills developed in this chapter. Just one such example
is that if we express two adjacent sides of a parallelogram in vector form, then
the norm of the cross product of these two vectors is equal to the area of the
parallelogram!

By the time you arrive at university, you’ll no doubt be a master of dif-
ferentiating all sorts of real functions. When you start your degree, there’s a
great deal of work to be done in order to prove that all of the tools you’re using
are indeed valid. In doing this work, you’ll uncover a difficulty: differentiating
gets problematic when there are vectors involved. Many “old favourites” like
the chain rule need a complete overhaul to work with vectors – and that’s just
the tip of the iceberg. Once again, Vector Calculus helps develop many of the
skills needed to tackle calculus problems with vectors.
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Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. Find
(

2 3
9 2

)
+
(

5 6
−3 −2

)
.

2. Find 3

⎛⎝8 −2
9 5
4 6

⎞⎠−
⎛⎝−2 4

3 −1
8 1

⎞⎠.

3. Find 4
(

2 1
3 −1

)
+ 6

(−1 6
−4 2

)
.

4. Find
(

2 3
−1 4

)(
5 −6
1 2

)
.

5. Find

⎛⎝ 2 −1
−3 4
−2 9

⎞⎠(2 −6
4 1

)
.
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6. Find

⎛⎝ 9 −5 3
−2 1 6
5 4 −1

⎞⎠⎛⎝ 2 4
−3 1
6 2

⎞⎠+

⎛⎝ 2 6
−4 1
5 9

⎞⎠.

7. Find
(−2 1

9 3

)(
4 −1 9
−3 2 3

)
+
(−6 3 1

1 5 7

)
.

8. Let A =
(

3 4
−2 1

)
. Find det(A).

9. Find the inverse of
(

4 6
−5 −8

)
.

10. Let A =
(

6 19
3 9

)
. Find A−1.

6.1 Enter the Matrix

Unless you’ve already studied a lot of pure mathematics, it is quite unlikely
that you’ll have come across matrices before. They are actually one of the most
important and useful tools in a whole range of mathematics, and as such they
will appear in lots of your modules at university. This means, of course, that it
is vital to get a really good understanding of the concepts and applications of
matrices, because you will be able to use them in a whole range of situations –
and therefore get lots of marks in exams!

A What?

If you’ve never met one before, you’ll no doubt be wondering what a matrix
actually is (other than a computerised world designed by the machines). Here’s
the definition:

A matrix is a rectangular array of numbers.

Not too awful, is it? (The definition, that is, not the joke). Here are some
examples:

A =
(

1 5
3 4

)
, B =

(
7 11 3
4 8 7

)
, C =

⎛⎝8 12 9
9 6 3
1 5 7

⎞⎠
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If a matrix has m rows and n columns, then we call that matrix an m × n

matrix. So, in the examples above, A is a 2 × 2 matrix, B is a 2 × 3 matrix,
and C is a 3× 3 matrix. This “m×n” term is called the “order” of the matrix
and, unsurprisingly, if m = n then we call the matrix a “square matrix.”

When we are talking about matrices in general, we can write out something
like A =

(
α11 α12
α21 α22

)
. In this case it is clear that we are talking about a 2 × 2

matrix, but we can abbreviate this and still convey the same information. We
can instead write A = (αij)m×n, which says that we have a matrix of order
m × n in which the intersection of the ith row and the jth column is the
entry αij . Make sure that you’re comfortable with the idea that both of these
representations of a “general” matrix convey the same information – one in a
visual way, the other in a concise way. Which one of these is used is largely
based on the preference of its scribe, but sometimes one or the other of them
is better at conveying a particular idea or argument.

Manipulation

Just like numbers and vectors, we can do lots of different things with a pair of
matrices. Here, we’re going to go through some of the basic operations that I
know you’re just dying to learn about. Firstly, let’s tackle equality: rather like
vectors, two matrices are equal if and only if their components are equal. So if
we know that: (

a b

c d

)
=
(

e f

g h

)
then we know that a = e, b = f , c = g and d = h. Notice that by this definition
two matrices of different orders can never be equal.

Now let’s consider matrix addition. To add two matrices together, we simply
add the two corresponding elements of each matrix. In algebraic language, this
means that given a matrix A = (αij)m×n and B = (βij)m×n, then the (i, j)th
component of the matrix A + B is αij + βij . Don’t worry if you’re not entirely
happy with that statement right away; there are a lot of letters flying around.
Take a glance at this worked example, then come back for a second look:

If A =
(

5 3
1 4

)
and B =

(
2 1
1 8

)
, find A + B.
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A + B =
(

5 3
1 4

)
+
(

2 1
1 8

)
=
(

5 + 2 3 + 1
1 + 1 4 + 8

)
=
(

7 4
2 12

)
Matrix subtraction is performed in the same way, except that we subtract the
corresponding elements of the matrices. The logic these mathematicians use –
I just don’t understand it sometimes! Here’s the worked example:

If C =
(

8 0
6 9

)
and D =

(
2 1
5 3

)
, find C − D.

(
8 0
6 9

)
−
(

2 1
5 3

)
=
(

8 − 2 0 − 1
6 − 5 9 − 3

)
=
(

6 −1
1 6

)
As you might well have noticed, there is a strict constraint on matrix addition
and subtraction: We can only add or subtract matrices of the same order. There
are no exceptions to this, so if you have two matrices of differing orders, then
it just ain’t happening.

Scalar Multiplication

Another very straightforward manipulation with matrices is that of scalar mul-
tiplication. If you’ve studied the chapter on vectors you’ll recall that a scalar
is “just a number,” and so scalar multiplication of matrices is anything of the
form λA, where λ is the scalar and A is the matrix. To perform scalar mul-
tiplication of matrices, we simply multiply every element in the matrix by the
scalar. Here’s a quick example to illustrate the idea:

3
(

2 4
1 9

)
=
(

(3 × 2) (3 × 4)
(3 × 1) (3 × 9)

)
=
(

6 12
3 27

)
And here’s the same principle being applied to a 3 × 3 matrix:

−2

⎛⎝4 9 6
1 3 −5
0 −2 14

⎞⎠ =

⎛⎝(−2 × 4) (−2 × 9) (−2 × 6)
(−2 × 1) (−2 × 3) (−2 ×−5)
(−2 × 0) (−2 ×−2) (−2 × 14)

⎞⎠
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=

⎛⎝−8 −18 −12
−2 −6 10
0 4 −28

⎞⎠
That really is all there is to it!

Before we go on to the more complicated operations, let’s enjoy what should
be a relatively straightforward batch of exercises.

EXERCISES

6.1.1. A =

⎛⎝α11 α12 α13 α14 α15

α21 α22 α23 α24 α25

α31 α32 α33 α34 α35

⎞⎠ is one way of writing “A is a

3 × 5 matrix.” What is the other way?

6.1.2. What is the order of A in the question above?

6.1.3. Find
(

2 3
1 5

)
+
(

5 6
2 1

)
.

6.1.4. Find
(−8 1

7 4

)
+
(−2 6
−4 1

)
.

6.1.5. Find 3

⎛⎝ 8 1 4
−2 6 0
5 1 −2

⎞⎠.

6.1.6. Find

⎛⎝4 12 −2
6 1 0
4 12 7

⎞⎠−
⎛⎝11 3 6
−4 1 12
3 −3 1

⎞⎠.

6.1.7. If B =

⎛⎝1 1 −7
3 71 1
6 −2 17

⎞⎠ and C =
(

2 5 7
12 15 10

)
, is it possible to find

either of B + C or B − C? Why?

6.1.8. Find 8
(−1 3

1 4

)
+
(

9 0
2 4

)
.

6.1.9. Find 6
(

1 3 2
−1 4 9

)
− 3

(
1 7 4
4 2 1

)
.

6.1.10. Find 2

⎛⎝ 1 8 −4
−6 −9 1
2 5 6

⎞⎠+

⎛⎝ 4 −3 6
2 5 −9
−1 4 3

⎞⎠.
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6.2 Multiplication and More

Now that we’ve looked at matrix addition and matrix subtraction, the next
logical step is to examine matrix multiplication. Sadly, this one is not as easy
as addition or subtraction, but don’t despair because once you have the hang
of it, it’s not too bad at all.

Again, let’s start with the algebraic definition first and then take a look at
the process in action, so that it’s clearer what the definition really means:

If A = (αij)l×m and B = (βij)m×n, then we define AB to be the matrix
C = (γij)l×n, such that γij = αi1β1j + αi2β2j + · · · + αimβmj .

Unless you have an excellent eye for algebra that will no doubt look confusing,
so let’s look at it carefully using a worked example.

Let A =
(

2 0 5
1 3 8

)
and B =

⎛⎝1 3 0
5 2 1
6 4 0

⎞⎠ . Find AB.

Let’s go about breaking that definition down, bit by bit. From the algebraic
definition, we can see that we are allowed to multiply these matrices: if we
multiply a 2 × 3 matrix by a 3 × 3 matrix, then we will get a 2 × 3 matrix
as our answer. If we call C the solution matrix (i.e., the matrix AB), then
C =

(
γ11 γ12 γ13
γ21 γ22 γ23

)
. Now, let’s take a look at what we’re going to actually

have to do to find this solution matrix.
The “mess” of alphas, betas and gammas in the definition is simply showing

us how we find specific elements in the solution matrix. Let’s try to “decode”
what’s there, to find γ11. We see that γ11 = α11β11 + α12β21 + α13β31. So, in
this case, γ11 = (2 × 1) + (0 × 5) + (5 × 6). That is, γ11 = 32.

The key thing to notice here is that this process is the same as something
that you’ve seen before. So long as you’ve studied the chapter on vectors, you
should recognise this as taking the dot product of the first row of A with the
first column of B. Nice, eh? That definitely clears things up for us:

To find the (i, j)th element of the solution matrix, we simply take the dot
product of the ith row of A with the jth column of B.

Let’s quickly work through a few more, and find the solution matrix:

γ11 = (2, 0, 5) · (1, 5, 6)

= (2 × 1) + (0 × 5) + (5 × 6)

= 32
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γ12 = (2, 0, 5) · (3, 2, 4)

= (2 × 3) + (0 × 2) + (5 × 4)

= 26

γ13 = (2, 0, 5) · (0, 1, 0)

= (2 × 0) + (0 × 1) + (5 × 0)

= 0

γ21 = (1, 3, 8) · (1, 5, 6)

= (1 × 1) + (3 × 5) + (8 × 6)

= 64

γ22 = (1, 3, 8) · (3, 2, 4)

= (1 × 3) + (3 × 2) + (8 × 4)

= 41

γ23 = (1, 3, 8) · (0, 1, 0)

= (1 × 0) + (3 × 1) + (8 × 0)

= 3

The solution matrix to the worked example is
(

32 26 0
64 41 3

)
. That might seem

like an enormous effort, but as you get more and more practice at doing it,
you won’t need to write out all of the individual steps – doing it in your head
and just writing down the answer is much faster. Before we take a look at
another example, here is a list of some important things to bear in mind when
conducting matrix multiplication:

• Although the two matrices don’t have to be of the same order, we can only
multiply matrices if the number of columns in the first matrix is the same as
the number of rows in the second.

• The solution matrix will have the same number of rows as the first matrix,
and the same number of columns as the second.

• From the two facts above, it should be clear that, in general, AB �= BA. This
is a key fact, where matrices behave differently to numbers. Don’t forget it!
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Here’s one last worked example before we move on:

Find

⎛⎝ 1 −2 5
−2 1 3
0 3 −1

⎞⎠⎛⎝2 5 0
3 −1 −3
6 −1 0

⎞⎠ .

γ11 = (1,−2, 5) · (2, 3, 6)

= 26

γ12 = (1,−2, 5) · (5,−1,−1)

= 2

γ13 = (1,−2, 5) · (0,−3, 0)

= 6

γ21 = (−2, 1, 3) · (2, 3, 6)

= 17

γ22 = (−2, 1, 3) · (5,−1,−1)

= −14

γ23 = (−2, 1, 3) · (0,−3, 0)

= −3

γ31 = (0, 3,−1) · (2, 3, 6)

= 3

γ32 = (0, 3,−1) · (5,−1,−1)

= −2

γ33 = (0, 3,−1) · (0,−3, 0)

= −9

So, the solution matrix is
(

26 2 6
17 −14 −3
3 −2 −9

)
.
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Diagonal Matrices

At the very beginning of this chapter we met square matrices: matrices with
the same number of rows as columns. There is a special type of square matrix,
called a diagonal matrix , which is a square matrix where all of the entries not
on the “main diagonal” (i.e., any αij where i �= j) are 0s. So that you can see
what this means visually, here are some examples of diagonal matrices:

(
2 0
0 5

)
,

⎛⎝3 0 0
0 2 0
0 0 4

⎞⎠ ,

⎛⎜⎜⎝
−7 0 0 0
0 1 0 0
0 0 0 0
0 0 0 14

⎞⎟⎟⎠
If that last one (with a 0 in (3, 3)) came as a surprise to you, take another look at
the definition. We don’t mind if 0s are on the diagonal, we only demand that
there are 0s everywhere not on the diagonal. There is also an abbreviation,
“diag,” that is commonly used when referring to diagonal matrices (mathe-
maticians can get viciously lazy when writing things down). We can refer to a
diagonal matrix simply by the entries on its main diagonal, because we know
that everywhere else is made up of 0s. So the matrices above can be written as
diag(2, 5), diag(3, 2, 4) and diag(−7, 1, 0, 14), respectively.

Identity Crisis

There is a special kind of diagonal matrix that is very useful when we work with
matrices. It is called the identity matrix . When we multiply numbers together,
the number 1 is “the multiplicative identity,” because multiplying any number
by 1 will give you the same number back. Unsurprisingly, then, the identity
matrix is the matrix that you can multiply any other matrix by, and get that
original matrix back again. For this reason, the identity matrix is a diagonal
matrix with all 1s on the main diagonal. We write the identity matrix as In,
where n is the number of rows (or columns – the matrix is square) in the matrix.
Here are two examples of the identity matrix:

I2 =
(

1 0
0 1

)
, I3 =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠
Let’s check that the useful property of matrix multiplication by the identity
matrix really does work:
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(
3 5
4 2

)(
1 0
0 1

)
=
(

(3 × 1) + (5 × 0) (3 × 0) + (5 × 1)
(4 × 1) + (2 × 0) (4 × 0) + (2 × 1)

)
=
(

3 5
4 2

)
Interestingly, multiplying by the identity matrix is one of the few times where
the order that multiplication is done in doesn’t matter. You’ll remember from
the list above that, in general, AB �= BA, but actually AIn = InA. You can
easily check this property by redoing the example above in the opposite order
if you don’t believe it!

Zilch

There’s one last kind of “special” matrix that we’re going to take a look at
before we hit the exercises. This is the zero matrix , 0n. It is an (n× n) matrix
in which every element is 0. Hopefully these examples won’t shock you:

02 =
(

0 0
0 0

)
, 03 =

⎛⎝0 0 0
0 0 0
0 0 0

⎞⎠
When we’re dealing with numbers, 0 is “the additive identity,” because adding
0 to any number will give you the same number back. The same is true of the
zero matrix in matrix addition: adding the zero matrix to any other matrix will
give the original matrix back. I’m sure that this is clear enough to not require
an example, so let’s get down to business.

EXERCISES

6.2.1. Find
(

2 4
3 1

)(
1 9
0 4

)
.

6.2.2. Find
(

3 1
5 2

)(
4 3
0 2

)
.

6.2.3. Find

⎛⎝4 2
3 6
1 4

⎞⎠(2 1
3 6

)
.

6.2.4. Find
(−8 3 9

2 4 −6

)⎛⎝3 −6 2
4 6 −1
1 −9 3

⎞⎠.
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6.2.5. Find
(

1 0
0 1

)(
3 4
2 5

)
and

(
3 4
2 5

)(
1 0
0 1

)
. What do you notice?

6.2.6. Find
(

2 0
0 4

)(−8 3
0 2

)
.

6.2.7. Find
(−2 1

5 0

)(
3 8
5 7

)
+
(

2 4
1 3

)
.

6.2.8. Find
(

1 −6 5
0 1 2

)⎛⎝1 0
8 4
9 0

⎞⎠+
(−4 0

2 −3

)
.

6.2.9. Find
(

2 6
5 0

)(
1 2
3 0

)
+ I2.

6.2.10. Find

⎛⎝2 3 1
0 0 1
0 2 3

⎞⎠⎛⎝4 8 1
6 2 5
0 3 8

⎞⎠− diag(1, 2, 3).

6.3 Determinants and Inverses

When dealing with square matrices, there is a very useful piece of information
called the determinant . It has lots of different uses, and we’re going to look at
one of them now. In this whole section, we’re going to restrict ourselves to 2×2
matrices, because finding the determinant of a square matrix bigger than this
is much more complicated. First up, a definition:

The determinant of the matrix
(

a b

c d

)
is ad − bc.

There’s not really anything to understand as such, so just remember it well.
Much like the other things that we’ve just looked at, there are numerous differ-
ent ways of writing “the determinant of matrix A.” The most common is simply

det(A), but if we want to write “the determinant of the matrix A =
(

a b

c d

)
”,

then we can also write
∣∣∣∣ a b

c d

∣∣∣∣ (that is, with straight lines at the edges, instead

of the usual brackets). So, to quickly recap:

det(A) =
∣∣∣∣ a b

c d

∣∣∣∣ = ad − bc

Here are two worked examples of finding the determinant:
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• A =
(

2 5
3 4

)
. Find det(A).

det(A) = (2 × 4) − (5 × 3) = 8 − 15 = −7.

• Find
∣∣∣∣ 2 4

3 9

∣∣∣∣. ∣∣∣∣ 2 4
3 9

∣∣∣∣ = (2 × 9) − (4 × 3) = 18 − 12 = 6.

Hopefully you’ve got that under your belt now, so let’s look at a handy use for
the determinant.

The Inverse of a Matrix

When dealing with real numbers, R, every number (other than zero) has a “mul-
tiplicative inverse.” That means for every real number we could ever imagine,
there is another real number that we could multiply our number by, and get the
multiplicative identity (i.e., 1) as the the result. In real numbers, finding the
multiplicative inverse is really easy: If the number that we choose is x, then
the multiplicative inverse is simply 1

x (which explains why we can’t find a mul-
tiplicative inverse for zero). Now, let’s consider a similar idea with matrices: if
we take a matrix, might we be able to find another matrix so that when these
two matrices are multiplied together we get the identity matrix?

As it turns out, the answer is sometimes. There are cases where a matrix
has no inverse, but in the other cases (where an inverse does exist) there is a
way to find it. There is a proof of what we’re about to see, but understanding
some of the steps requires a much greater knowledge of matrices than we’ve
acquired here. Instead, we’ll take a look at the result of the proof and then
verify that this result does indeed have the required property: that a matrix
multiplied by its inverse gives the identity matrix. Here’s that result:

If A =
(

a b

c d

)
, then the inverse of A is 1

det(A)

(
d −b

−c a

)
.

In the statement above, we can clearly see when a matrix is invertible, and
when it is not. For any 2 × 2 matrix, there is a 1

det(A) scalar multiple. This
means that if ad = bc, then ad − bc = 0, and hence 1

det(A) is not defined. This
is the factor that we use to work out whether a matrix is invertible or not: if
ad − bc = 0, then the matrix is not invertible. If ad − bc �= 0, then an inverse
exists. Where it does exist, the shorthand for “the inverse of A” is simply A−1.
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Be sure to remember that this doesn’t mean 1
A , it means the inverse of A. Now

let’s check that all important property:

Verify that, for 2 × 2 matrices, A−1A = I2.

A−1A =
1

det(A)

(
d −b

−c a

)(
a b

c d

)
=

1
det(A)

(
da − bc bd − bd

−ac + ac −bc + ad

)
=

1
det(A)

(
da − bc 0

0 da − bc

)
=

1
det(A)

(
det(A) 0

0 det(A)

)
=
(

1 0
0 1

)
There we have it – a really neat little trick (remember that ad − bc is the
determinant of A), and we’ve verified what we need to. Of course, if we wanted
to verify it with the A and A−1 the other way around (we’ve only done A−1A

here, we should also do AA−1), then exactly the same trick works – try it for
yourself if you’re confident. Here are a final few examples:

• Is the matrix
(

4 6
2 3

)
invertible? If it is, invert it.

ad − bc = (4 × 3) − (6 × 2) = 0, so no, the matrix is not invertible.

• Is the matrix
(−2 −4

2 3

)
invertible? If it is, invert it.

(−2 × 3) − (−4 × 2) = 2. So A−1 =
1
2

(
3 4
−2 −2

)
=
(

3
2 2
−1 −1

)
.

In the second case, where we are given an invertible matrix, we can check that
our answer is correct by multiplying it by the original matrix, and checking that
we get the identity matrix. Because we know that this should work whichever
way around we do the multiplication, let’s check it both ways:(

3
2 2
−1 −1

)(−2 −4
2 3

)
=
(−3 + 4 −6 + 6

2 − 2 4 − 3

)
=
(

1 0
0 1

)
(−2 −4

2 3

)(
3
2 2
−1 −1

)
=
(−3 + 4 −4 + 4

3 − 3 4 − 3

)
=
(

1 0
0 1

)
All present and correct! Here’s the final set of exercises:
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EXERCISES

6.3.1. If A =
(

2 3
4 1

)
, find the determinant of A.

6.3.2. If B =
(−4 2

3 1

)
, find det(B).

6.3.3. Find
∣∣∣∣ −2 3
−1 6

∣∣∣∣.
6.3.4. Find

∣∣∣∣ 4 −9
−6 2

∣∣∣∣.
6.3.5. Which of the following matrices are invertible?

A =
(

1 0
0 1

)
, B =

(
2 −6
−3 −5

)
, C =

(−9 6
3 −2

)

6.3.6. Find the inverse of
(−3 −13

6 10

)
.

6.3.7. Find the inverse of
(−3 7

3 −6

)
.

6.3.8. Let A =
(−2 9
−4 −3

)
. Find A−1.

Where Now?

Matrices have a massive range of uses, from differential equations to computer
programming. We’ll explore in the next chapter how matrices are fundamentally
linked to linear maps, and another great use of them is in solving complicated
systems of simultaneous equations. Much of the mathematical work that is done
with computers relies heavily on matrices, and as such many areas of cutting
edge research rely on them as a fundamental tool.

In finding determinants and inverses, we’ve only looked at the 2 × 2 case,
but of course this is not the whole picture. The proof of why the inverse of a
2×2 matrix is what it is comes as part of the general case of invertible matrices.

It’s definitely worth getting a good deal of practice with matrices before
going to university. The early chapters of Elementary Linear Algebra (W. K.
Nicholson, McGraw-Hill, 2004) have a good selection of exercises covering the
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things that we’ve done in this chapter, and the book also goes on to explore
working with matrices in a more general sense.

The matrices that we looked at in this chapter all had finite order, but this
doesn’t have to be the case – from here, even the sky is not the limit.





7
Matrices as Maps

Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. Find the matrix that corresponds to the linear map:

x1 = − 2x0 + y0

y1 = 4x0 − 2y0

2. Find the matrix that corresponds to the linear map:

x1 = − y0

y1 = 2x0 + 3y0

3. Write out the system of equations for the linear map whose corresponding

matrix is
(

3 −2
0 1

)
.

4. What is the matrix corresponding to a reflection about the x-axis?

5. What is the matrix corresponding to a rotation by π
4 radians anticlockwise

about the origin?
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6. Find the single matrix that corresponds to first rotating by π radians anti-
clockwise about the origin, and then enlarging by a factor of 3 in both the
horizontal and vertical directions.

7.
(

3
4

)
is an eigenvector of

(
4 3
8 2

)
. What is the corresponding eigenvalue?

8.
(

1
−2

)
is an eigenvector of

(
4 3
8 2

)
. What is the corresponding eigenvalue?

9. Consider the matrix A =
(

2 1
4 −1

)
. What are its eigenvalues and corre-

sponding eigenvectors?

10. Consider the matrix B =
(−6 2
−7 3

)
. What are its eigenvalues and corre-

sponding eigenvectors?

7.1 Over and Over

In the previous chapter, we met a new beast: the matrix. So long as you’ve
studied that chapter (and if you haven’t, you should do so now!), you’ll know
the basics of performing matrix algebra. In this chapter we’re going to take
things a little further – we’re going to look at the amazing relationship between
matrices and linear maps. We’re still going to stick with 2 × 2 matrices, but
we’re going to look at some of the very interesting things that we can do with
them.

Every Journey Needs a Map

The idea of linear maps will almost certainly be new to you, as it’s rarely
covered by students before starting university. Don’t despair, however; we’re
here to help.

Imagine that we have chosen a single point in the plane: let’s call our point
(x0, y0). We want to apply a map to our point, and doing so will “send” our
point to a new point in the plane; we’ll call our “destination point” (x1, y1).
Imagine that we had a map so that the point we’re mapping to is uniquely
determined by the point at which we start, and furthermore that we could
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write the system of equations:

x1 = ax0 + by0

y1 = cx0 + dy0

where a, b, c and d are scalars – that is, we find (x1, y1) by taking some linear
function of x0 and y0. Then the map that we’re applying to (x0, y0) is called a
linear map.

Exactly where the point (x0, y0) will be mapped to by applying the linear
map is determined by the values of a, b, c and d that we choose. For this reason,
keeping track of a, b, c and d is definitely worthwhile, but it would be helpful
if we could somehow store them all together. We know two ways of doing this:
we can either consider the vector (a, b, c, d), or we can consider a matrix with
a, b, c and d as its entries. As it turns out, using matrices opens the doorway
to a whole new way of thinking about problems.

The Matrix Multiverse

Let’s put a, b, c and d into a matrix like this:(
a b

c d

)
We’ll be going into more detail about many familiar linear maps later in this
chapter, but let’s take a look at one now. Imagine that we have chosen our
point (x0, y0) and we want to use the linear map that maps our point directly
back onto itself. That is, we want a map so that (x1, y1) = (x0, y0): this is what
we call the identity map. Remember our system of equations:

x1 = ax0 + by0

y1 = cx0 + dy0

We can see by equating coefficients (in this case by eye) that the solution we
require to this system is when x1 = x0 and y1 = y0: that is when a = 1, b = 0,
c = 0 and d = 1. Putting these into the 2 × 2 matrix yields:(

1 0
0 1

)
No prizes for spotting that this is exactly the matrix that we called “the identity
matrix” in the previous chapter, but don’t think of this as some kind of amazing
coincidence. In actual fact, matrices are defined to act exactly like linear maps.
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From Multiplication to Compositions

It would be helpful if we could rewrite the system of equations involving a, b, c

and d as a single matrix equation, using the idea of matrix multiplication that
we met in the previous chapter. Rather than trying to “work out” the equation,
we’ll state it and then prove that it does indeed represent the system that we
require. Don’t worry, this isn’t cheating, it just speeds up the process a little:
think of it like expanding brackets to prove that two expressions are equal,
rather than factorising! The matrix equation that we’re going to be working
with is: (

x1

y1

)
=
(

a b

c d

)(
x0

y0

)
Multiplying out the right-hand side gives us:(

x1

y1

)
=
(

ax0 + by0

cx0 + dy0

)
We saw in the last chapter that we declare two matrices to be equal if and only
if all corresponding entries are equal, so for our system to have equality we
need both of the following to hold:

x1 = ax0 + by0

y1 = cx0 + dy0

which is precisely the system of equations that we were describing earlier, so
our matrix equation is definitely correct. If we set:

v0 =
(

x0

y0

)
v1 =

(
x1

y1

)
A =

(
a b

c d

)
then we can write our matrix equation as the much more elegant:

v1 = Av0

So we’re comfortable dealing with a linear map which takes us from (x0, y0)
to (x1, y1). Now let’s imagine that we have another linear map, which takes
us from (x1, y1) to (x2, y2). We can again write this as a matrix equation, like
this: (

x2

y2

)
=
(

p q

r s

)(
x1

y1

)
Which we can further simplify by setting:

v2 =
(

x2

y2

)
B =

(
p q

r s

)
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Making our equation become:
v2 = Bv1

Now for the clever part – we can combine the equations:

v1 = Av0 and v2 = Bv1

to get the single equation:
v2 = BAv0

Let’s take a moment to step back and think about what’s going on here: we
considered a linear map taking us from (x0, y0) to (x1, y1), and then another
that takes us from (x1, y1) to (x2, y2). But we could have considered the single
linear map that took us from (x0, y0) straight to (x2, y2).

How would we write this as a matrix equation? Well, for some matrix C, it
would be:

v2 = Cv0

But wait: that looks rather like our equation

v2 = BAv0

What’s happening here?

Marvellous Matrices

The composition of the two linear maps results in us going straight from (x0, y0)
to (x2, y2). Combining the matrix equations gave us the equation v2 = BAv0.
Again, it’s no coincidence that these two concepts yield strikingly similar re-
sults: because composition of linear maps is equivalent to the multiplication of
matrices. That might seem a little strange, but to solidify things a little simply
consider the matrix multiplication BA. If we let BA = C, then we arrive at
the equation v2 = Cv0, which is precisely what we said we were looking for.
Want things a little more formal than that? Well, here you go. . .

Examine the sets of equations that we had:

x1 = ax0 + by0

y1 = cx0 + dy0

x2 = px1 + qy1

y2 = rx1 + sy1

Plugging the first two equations into the second two gives us:

x2 = p(ax0 + by0) + q(cx0 + dy0)

y2 = r(ax0 + by0) + s(cx0 + dy0)
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Expanding the brackets:

x2 = pax0 + qcx0 + pby0 + qdy0

y2 = rax0 + scx0 + rby0 + sdy0

Refactorising:

x2 = (pa + qc)x0 + (pb + qd)y0

y2 = (ra + sc)x0 + (rb + sd)y0

So our matrix BA is: (
pa + qc pb + qd

ra + sc rb + sd

)
This means that because we demand matrix multiplication to be equivalent to
the composition of linear maps, the only possible way we could define matrix
multiplication is: (

p q

r s

)(
a b

c d

)
=
(

pa + qc pb + qd

ra + sc rb + sd

)

EXERCISES

7.1.1. What name do we give to the linear map that is equivalent to the

matrix
(

1 0
0 1

)
?

7.1.2. Find the matrix that corresponds to the linear map:

x1 = − x0

y1 = y0

7.1.3. Find the matrix that corresponds to the linear map:

x1 = 2x0 + 3y0

y1 = x0 − 4y0

7.1.4. Find the matrix that corresponds to the linear map:

x1 = − 3x0

y1 = x0 − 2y0

7.1.5. Write out the system of equations for the linear map whose corre-

sponding matrix is
(

1 2
5 3

)
.
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7.1.6. Write out the system of equations for the linear map whose corre-

sponding matrix is
(

2 −3
6 2

)
.

7.1.7. Write out the system of equations for the linear map whose corre-

sponding matrix is
(

4 0
2 1

)
.

7.1.8. Where would the point (7, 3) be mapped to by the linear map whose

corresponding matrix is
(

0 0
0 0

)
?

7.2 Old Friends

In this section, we’ll be taking a closer look at some of the things that linear
maps can do for us. You’ll see that some of the transformations you’ve known
for years can be achieved by matrix multiplication!

Mirror Images

Working on a 2-dimensional plane, one of the basic transformations that we
might want to consider is reflection. Reflection is the process of taking the
“mirror image” of the plane, about some given axis of reflection. We’ll start
by looking at reflection in lines which result in particularly nice matrices, and
then we’ll move onto a general case.

First up, we’re going to look at reflection in the x-axis, as shown in Figure
7.1.

Let’s consider exactly what a reflection like this does to our (x0, y0). The x

coordinate is the same before and after the reflection, so we can immediately
see that x1 = x0. The y coordinate, however, doesn’t stay the same: its sign is
reversed when the reflection takes place. This means that y1 = −y0. Putting
these two equalities together gives us:

x1 = x0

y1 = − y0

This corresponds to the matrix: (
1 0
0 −1

)
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Figure 7.1

Similarly, we can reflect about the y-axis. This time our y coordinate is left
unchanged by the reflection while the sign of the x coordinate changes, so our
system of equations is:

x1 = − x0

y1 = y0

This corresponds to the matrix: (−1 0
0 1

)
Now that we’ve seen some specific cases of reflection, it’s time to move towards
a more general case. We’re going to examine reflection about any line passing
through the origin: the two lines above were certainly examples of that, so let’s
explore a little deeper. A good starting point would be refection about the line
y = x, as in Figure 7.2.

Let’s think carefully about what this reflection does to (x0, y0). After we
apply the reflection, the x coordinate becomes the y coordinate and the y co-
ordinate becomes the x coordinate. We therefore have the system of equations:

x1 = y0

y1 = x0

Which corresponds to the matrix: (
0 1
1 0

)
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Figure 7.2

Excellent! We’ve now looked at a line that doesn’t lie directly on one of the
co-ordinate axes, but to finish the job entirely we need to find a way to describe
a reflection in any straight line through the origin.

The key variable that we’re going to need is the angle that the axis of
reflection makes with the positive x-axis. We’ll call this angle α, and measure
it as shown in Figure 7.3.

Figure 7.3
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Let’s derive the matrix that we require. We can imagine both our starting
and end points as being the sum of an x vector (corresponding to the x com-
ponent of that coordinate) and a y vector (corresponding to the y component
of that coordinate), as in Figure 7.4.

Figure 7.4

We’ve also drawn in the reflection of the x0 and y0 vectors, because we’re
going to call upon some trigonometry to express x1 and y1 in terms of x0 and
y0, as in Figure 7.5.

In triangle PQR, we have:

sin(2α) =
QR

x0
, and so QR = x0 sin(2α)

cos(2α) =
PQ

x0
, and so PQ = x0 cos(2α)

For triangle RST :

PR̂Q =
π

2
− 2α

SR̂T = 2α because PR̂T =
π

2

sin(2α) =
ST

y0
, and so ST = y0 sin(2α)

cos(2α) =
SR

y0
, and so SR = y0 cos(2α)
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Figure 7.5

Then:

x1 = PQ + ST

y1 = QR − SR

So:

x1 = x0 cos(2α) + y0 sin(2α)

y1 = x0 sin(2α) − y0 cos(2α)

So our matrix for a reflection about the straight line through the origin which
makes an angle of α with the positive x-axis is:(

cos(2α) sin(2α)
sin(2α) − cos(2α)

)
Let’s check that this agrees with the results we’ve already seen for the angles
0 (i.e., reflection about the x-axis), π

2 (i.e., reflection about the y-axis) and π
4

(i.e., reflection about the line y = x):

α = 0 :
(

cos(0) sin(0)
sin(0) − cos(0)

)
=
(

1 0
0 −1

)
α =

π

2
:
(

cos(π) sin(π)
sin(π) − cos(π)

)
=
(−1 0

0 1

)
α =

π

4
:
(

cos
(

π
2

)
sin
(

π
2

)
sin
(

π
2

) − cos
(

π
2

)) =
(

0 1
1 0

)
That’s exactly what we found at the beginning of the section! Hooray!
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Let’s Go Round Again

Another interesting linear map is rotation. Just like with reflection, we can find
a matrix to express a general rotation through an angle θ anticlockwise about
the origin. We’ll be working with Figure 7.6 this time.

Figure 7.6

Once again we’ll be using trigonometry to find our expressions for x0 and
y0. First, we’re going to do some geometry: PQ is parallel to SR, so QP̂R =
PR̂S = θ. Then, because PR̂T is a right angle, we know that SR̂T = π

2 − θ.
Finally, RT̂S = θ because RST is a triangle.

Now let’s examine triangle PQR:

sin θ =
QR

x0
, and so QR = x0 sin θ

cos θ =
PQ

x0
, and so PQ = x0 cos θ

For triangle RST :

sin θ =
SR

y0
, and so SR = y0 sin θ

cos θ =
ST

y0
, and so ST = y0 cos θ

We see that:

x1 = PQ − SR

y1 = QR + ST



7.2 Old Friends 101

And so we arrive at:

x1 = x0 cos θ − y0 sin θ

y1 = x0 sin θ + y0 cos θ

So the corresponding matrix is:(
cos θ − sin θ

sin θ cos θ

)
Let’s finish by taking a look at a specific example: rotation by π radians about
the origin. The matrix for this would be:(

cos π − sin π

sin π cos π

)
=
(−1 0

0 −1

)
That’s it for rotations: just don’t forget that we rotate through θ radians anti-
clockwise about the origin.

Eat Me, Drink Me

The last linear transformation that we’re going to examine is enlargement. Up
until now, it’s likely that you’ll have performed enlargements on various shapes
in the plane, from a given centre of enlargement by a given scale factor. The
kind of enlargement that we’re going to do here will always have the origin as
the centre of enlargement, but we won’t be using the idea of a single “scale
factor.” Instead, we’re going to allow a horizontal “stretch” by a given factor,
and a vertical “stretch” by another scale factor. Of course, we can choose these
two factors to be equal (resulting in the kind of enlargement you’re probably
already familiar with), but by allowing different parameters for the x and y

stretch gives us greater freedom to transform points and shapes in the plane.
Just like with our other transformations, we’re going to try to discover the

matrix that allows us to perform the required enlargement. If we’re stretching
by a factor of m in the x direction and by a factor of n in the y direction (with
both m and n strictly greater than 0), as in Figure 7.7, our system of equations
will look like this:

x1 = mx0

y1 = ny0

So the corresponding matrix is: (
m 0
0 n

)
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Figure 7.7

It’s worth mentioning that the word “enlargement” can be a bit deceiving:
if either of m or n are between 0 and 1 we actually get a “contraction” in that
direction. If m or n are negative then we still get an enlargement, but also
a change of sign. Think about the matrix multiplication if you’re struggling
to see why. Other than that, enlargement is fairly straightforward. After you
remember what the matrix looks like, simply plugging in the required values
of m and n will get you what you want!

Composition of Maps

In the previous section we explored the idea that matrix multiplication is ex-
actly equivalent to the composition of the maps that the matrices represent:
that is, performing one operation and then performing the other one on the
result of the first. We’re going to see a concrete example of this now that we
have a good set of transformation matrices under our belts.

Let’s imagine that we wanted to first reflect about the x-axis, and then to
rotate by π radians about the origin. If we call the reflection A and the rotation
B, we can find the corresponding matrices using the results we’ve just derived:

A =
(

1 0
0 −1

)
, B =

(−1 0
0 −1

)
We said that we want to perform the reflection first, and so using a matrix



7.2 Old Friends 103

equation like we did in the last section gives us:

v1 = Av0

We then want to perform B on v1, and so we get:

v2 = Bv1

Combining these two equations gives us:

v2 = BAv0

Look carefully at the order in which the matrices end up (remember, in general
AB �= BA when we multiply matrices): the operation that we want to perform
first goes on the right.

So what exactly is BA? Well, we simply multiply the matrices:(−1 0
0 −1

)(
1 0
0 −1

)
=
(−1 0

0 1

)
So there we have it: the matrix

(
−1 0
0 1

)
is the single matrix corresponding to

the transformation “first reflect in the x-axis, then rotate by π radians about
the origin.”

Being comfortable with this sort of calculation will be vital at university.
Here’s one last example before a set of exercises for you to try out for yourself:

What is the matrix corresponding to the linear map “first enlarge by
a factor of 3 horizontally and a factor of 2 vertically, and then rotate
by an angle of π

2 anticlockwise about the origin”?

We need to find the two matrices for the individual transformations, and then
multiply them together in the correct order. If we call the enlargement matrix
C and the rotation matrix D, we have:

C =
(

3 0
0 2

)
and D =

(
cos

(
π
2

) − sin
(

π
2

)
sin
(

π
2

)
cos

(
π
2

) ) =
(

0 −1
1 0

)
Now we just need to put these matrices in the correct order and multiply
them. We want to do C then D, which means that we need to perform the
multiplication DC:

DC =
(

0 −1
1 0

)(
3 0
0 2

)
=
(

0 −2
3 0

)
There we have it: a single matrix to describe a composition of transformations.
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EXERCISES

7.2.1. Find the matrix corresponding to the linear transformation “reflect
all points in the straight line that makes an angle of π

6 with the
positive x-axis”.

7.2.2. Find the matrix corresponding to a reflection in the line y =
√

3x.

7.2.3. Find the matrix corresponding to the linear transformation “rotate
all points π

4 radians anticlockwise about the origin.”

7.2.4. Find the matrix corresponding to a rotation by π
3 radians anti-

clockwise about the origin.

7.2.5. What is the matrix corresponding to an enlargement by scale factor
1
2 in both the x and y directions, with the origin as the centre of
enlargement?

7.2.6. Find the matrix corresponding to an enlargement by a factor of 3
horizontally and a factor of 6 vertically.

7.2.7. Find the single matrix that corresponds to first rotating by π
6 radians

anticlockwise about the origin, and then enlarging by a factor of 3
in both directions.

7.2.8. Find the single matrix that corresponds to first reflecting in the
straight line that makes an angle of 3π

4 radians with the positive
x-axis, and then enlarging by a factor of 2 horizontally and a factor
of 4 vertically.

7.2.9. Find the single matrix that corresponds to first rotating by π
2 radians

anticlockwise about the origin, and then reflecting in the line y = x√
3
.

7.2.10. Find the single matrix that corresponds to first reflecting in the x-
axis, then rotating by π

3 radians anticlockwise about the origin, and
then enlarging by a scale factor of 2 horizontally and a scale factor
of 1 vertically.

7.3 Eigenvalues and Eigenvectors

It’s fairly likely that eigenvalues and eigenvectors are new ideas to you. If
you’re already familiar with them it’s safe to head over to the exercises right
away, because we’re going to spend this section exploring what eigenvalues and
eigenvectors are, and also how to find them.
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Genesis

So just what are eigenvalues and eigenvectors? Imagine that A is a n× n (i.e.,
square) matrix, and v is a vector with n components, but not all 0s. Finally,
imagine that λ is a scalar (i.e., λ is “just a number”), so that the following
equality holds:

Av = λv

Then we say that λ is an eigenvalue of A, and that v is a corresponding eigen-
vector . It’s definitely worth remembering that definition, even before exploring
what each of the concepts means. It plays a huge part in lots of areas of mathe-
matics (see “Where Now?” for an overview of just a couple!), and it’s the kind
of definition that is more than likely to come up in university exams.

Let’s take a little time to look at why the equation is so special. It’s saying
that an eigenvector v of a matrix A is any vector which, upon performing the
multiplication Av, results in a vector that is some scalar multiple of v itself. A
geometric interpretation of this is that the vector we get from the multiplication
acts in the same direction as v (up to sign: it could be acting in the negative
direction when compared to v). This shows us why it’s important that we can’t
allow v to be a vector of all 0s: if we allowed that to be called an eigenvector,
then we would have to allow infinitely many values of λ, because the 0 vector
has no magnitude (or “size”).

Let’s take a look at an example:

Let A be the matrix
(

1 2
4 3

)
. A has an eigenvector v =

(
1
−1

)
. What is

the corresponding eigenvalue?

We know that we’re going to be dealing with that all important equality Av =
λv, and this type of question is really just a case of plugging everything in.
Here we go: (

1 2
4 3

)(
1
−1

)
= λ

(
1
−1

)
(−1

1

)
= λ

(
1
−1

)
Here we can see that λ = −1, and so the answer to the question is that the
corresponding eigenvalue is −1.

From Water to Wine

What we’ve done above is all well and good, but it isn’t particularly exciting
yet: the question told us an eigenvector, and we worked with it. But can we not
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be a little more fancy? Can we not work out the eigenvector for ourselves? Of
course we can! Make sure you’re up to speed with what it means for a matrix
to be invertible (it means that the determinant of the matrix is not equal to 0)
and bring a good eye for matrix algebra: we’re going in.

Firstly, take the standard equation for eigenvalues and eigenvectors, and
rearrange it so that we have the zero matrix on the right-hand side:

Av = λv

Av − λv = 0n

Recall from the previous chapter that multiplying by the identity matrix won’t
affect anything. Let’s do that now:

InAv − λInv = In0n

Av − λInv = 0n

Factorising out a v (but being careful to keep things in the right order, because
we know that order matters when we’re dealing with matrix multiplication!)
gives us:

(A − λIn)v = 0n

For now, let’s assume that the matrix (A − λIn) is invertible: that is, the
determinant of (A − λIn) is not equal to 0. If this is the case, then there exists
a matrix (A − λIn)−1 which is the inverse of the matrix (A − λIn). Remember
this point – we’re going to be coming back here very soon!

Let’s premultiply by this matrix:

(A − λIn)−1 (A − λIn)v = (A − λIn)−1 0n

v = (A − λIn)−1 0n

But any vector multiplied by the 0 matrix will result in a vector of 0s, and so
we are left with the equality v = 0. Hang on a minute: in our definition of an
eigenvector, we demanded that v was not a vector of all 0s, and that’s exactly
what we’ve just ended up with! What went wrong? The only place that we did
something questionable was when we stated that (A − λIn) must be invertible,
so we’re going to need to adopt the view that (A − λIn) is not invertible.

That means that we can write det (A − λIn) = 0, and it is this equation
that allows us to find eigenvalues for a matrix. We’ve got all the theory we need
now, so let’s get down to an example:

Find the eigenvalues of the matrix
(

7 −5
1 1

)
.
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From what we’ve just seen above, we know that what we really need to be
doing is solving the equation:

det (A − λI2) = 0

Let’s do it then!
If A is the matrix

(
a b
c d

)
, then:

(A − λI2) =
(

a b

c d

)
− λ

(
1 0
0 1

)
=
(

a b

c d

)
−
(

λ 0
0 λ

)
=
(

a − λ b

c d − λ

)
Let’s proceed with the specific example from the question. We need to solve
the equation det (A − λI2) = 0:

0 = det
((

7 −5
1 1

)
− λI2

)
= det

(
7 − λ −5

1 1 − λ

)
= (7 − λ)(1 − λ) + 5

= λ2 − 8λ + 12

= (λ − 6)(λ − 2)

λ = 2 and 6

There we have it: we’ve found the eigenvalues by solving a quadratic equation!
For a 2 × 2 matrix, finding eigenvalues always boils down to this, so you can
use a skill that you learned years ago to solve a whole new type of problem!

Any Vectors with That?

Now that we’ve seen how to find the eigenvalues for a matrix, all that remains
is to find the eigenvectors for each of the eigenvalues. This is mostly just a case
of solving simultaneous equations, but there are some things that we need to
be careful of. For example, when solving det (A − λIn) = 0, it’s very possible
that we end up with a quadratic equation that has repeated roots. We could
end up with the equation λ2 + 6λ + 9 = 0, which has the root λ = −3, but
no other roots. What happens to the eigenvalues and the eigenvectors in this
case?
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We only get one eigenvalue rather than two as we would normally have,
but this has a knock-on effect: When we calculate eigenvectors, we can end up
with two linearly independent answers for our eigenvectors. In the context of a
pair of eigenvectors, “linearly independent” means that one eigenvector is not a
scalar multiple of the other: geometrically, they are vectors which are pointing
in different (but not opposite!) directions. If you check our definitions of eigen-
vector and eigenvalue above, such a result doesn’t contradict any of the theory
that we developed there, but we’re not going to delve any deeper into these
types of matrices. Theory about the number of linearly independent eigenvec-
tors for a given matrix (and what this can tell us about other things) may not
appear in your degree until the end of the second year: instead, we’re going to
focus on the kind of example where we can find eigenvalues and eigenvectors
without these sorts of problems.

As we said above, in “nice” examples all we need to do to find the eigen-
vectors from the eigenvalues is to solve simultaneous equations. Think back to
the key equation:

Av = λv

Given matrix A, after we’ve found the values of λ the only thing that we don’t
know in this equality is v, and so we should certainly be able to calculate it.
The best way to see how is to work through a couple of examples; that way
we’ll also be able to go over the process of finding eigenvalues again, because
we always need to do that first. Let’s revisit an example that we saw earlier,
because that way we already know what part of the answer’s going to be:

Find the eigenvalues and corresponding eigenvectors for the matrix(
1 2
4 3

)
.

We start off by solving the equation det (A − λI2) = 0, like this:

0 = det
((

1 2
4 3

)
−
(

λ 0
0 λ

))
= det

(
1 − λ 2

4 3 − λ

)
= (1 − λ)(3 − λ) − 8

= λ2 − 4λ − 5

= (λ + 1)(λ − 5)

λ = 5 and − 1

So we have the eigenvalues as −1 and 5. Now let’s use the equation Av = λv
to find the corresponding eigenvectors for each of the eigenvalues. We’ll start
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with λ = −1. The eigenvector that we’re trying to find will have two entries,
and so we’ll call it the vector

(
v1
v2

)
:

Av = λv(
1 2
4 3

)(
v1

v2

)
= −1

(
v1

v2

)
(

v1 + 2v2

4v1 + 3v2

)
=
(−v1

−v2

)
Again, remember that we declare two matrices to be equal if and only if all of
their components are equal. This means that we are dealing with the simulta-
neous equations:

v1 + 2v2 = −v1

4v1 + 3v2 = −v2

There are infinitely many solutions to this pair of equations: any vector that
satisfies the condition v1 = −v2 will do. But that’s exactly what we should
expect: remember our geometric interpretation of an eigenvector involved the
phrase “acts in the same direction as v.” By finding the relationship between v1

and v2 we find the direction in which our eigenvector points, but then it doesn’t
matter about the magnitude of the eigenvector, so long as it isn’t equal to 0. It’s
generally best to pick a “convenient” solution to the eigenvector equation, so
we’ll choose

(
1
−1

)
, but we could have happily (and correctly!) chosen something

like
(

152361236
−152361236

)
or
(
−π
π

)
.

Now that we’ve found the corresponding eigenvector for one of our eigen-
values, to find the corresponding eigenvector for the other eigenvalue we just
repeat the process using that eigenvalue instead. Here goes:

Av = λv(
1 2
4 3

)(
v1

v2

)
= 5

(
v1

v2

)
(

v1 + 2v2

4v1 + 3v2

)
=
(

5v1

5v2

)
Leaving us with the simultaneous equations:

v1 + 2v2 = 5v1

4v1 + 3v2 = 5v2

Both of these equations can be rearranged to give 2v1 − v2 = 0, so any vector
of the form 2v1 = v2 is a solution. Specifically, we could choose the eigenvector
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(
1
2

)
. That’s it: we’re done! The answer is λ = −1, with corresponding eigen-

vector
(

1
−1

)
, and λ = 5, with corresponding eigenvector

(
1
2

)
. We’ll take a look

at one more example before hitting the exercises.

Consider the matrix A =
(

6 4
−2 −3

)
. What are its eigenvalues and

corresponding eigenvectors?

det (A − λI2) = (6 − λ)(−3 − λ) + 8 = 0

λ2 − 3λ − 10 = 0

(λ + 2)(λ − 5) = 0

λ = 5 and − 2

Finding the corresponding eigenvector for λ = 5:

Av = λv(
6 4
−2 −3

)(
v1

v2

)
= 5

(
v1

v2

)
(

6v1 + 4v2

−2v1 − 3v2

)
=
(

5v1

5v2

)
So our simultaneous equations are:

6v1 + 4v2 = 5v1

−2v1 − 3v2 = 5v2

Our solution vector is therefore any vector satisfying v1 = −4v2, so the vector(
4
−1

)
will certainly do. Now for the other eigenvalue:

Av = λv(
6 4
−2 −3

)(
v1

v2

)
= −2

(
v1

v2

)
(

6v1 + 4v2

−2v1 − 3v2

)
=
(−2v1

−2v2

)
So our simultaneous equations are:

6v1 + 4v2 = −2v1

−2v1 − 3v2 = −2v2

Our solution vector is therefore any vector satisfying 2v1 = −v2, so the vector(
1
−2

)
will certainly do.

Putting everything together, our solution is λ = 5, with corresponding
eigenvector

(
4
−1

)
, and λ = −2, with corresponding eigenvector

(
1
−2

)
.
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EXERCISES

7.3.1.
(

1
−2

)
is an eigenvector of

(
3 1
2 2

)
. What is the corresponding eigen-

value?

7.3.2.
(

1
1

)
is an eigenvector of

(
3 1
2 2

)
. What is the corresponding eigen-

value?

7.3.3.
(

1
−4

)
is an eigenvector of

(
6 2
−8 −4

)
. What is the corresponding

eigenvalue?

7.3.4.
(

1
−1

)
is an eigenvector of

(
6 2
−8 −4

)
. What is the corresponding

eigenvalue?

7.3.5. Consider the matrix A =
(

4 3
2 −1

)
. What are its eigenvalues and

corresponding eigenvectors?

7.3.6. Consider the matrix B =
(−2 −1

7 6

)
. What are its eigenvalues and

corresponding eigenvectors?

7.3.7. Consider the matrix C =
(

1 5
1 −3

)
. What are its eigenvalues and

corresponding eigenvectors?

7.3.8. Consider the matrix D =
(−5 3

3 3

)
. What are its eigenvalues and

corresponding eigenvectors?

7.3.9. Consider the matrix E =
(

7 −1
4 2

)
. What are its eigenvalues and

corresponding eigenvectors?

7.3.10. Consider the matrix F =
(−9 −10

3 2

)
. What are its eigenvalues and

corresponding eigenvectors?

Where Now?

We hope that this chapter has been enlightening to you: seeing why we work
with matrices in the way that we do is the starting point of something called
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“linear algebra”. You’ll probably meet linear algebra in your first year at univer-
sity, and it leads to a huge array of courses in other areas of abstract algebra. If
you want to do some background reading now, we’d recommend taking a look
at Elementary Linear Algebra, 9th Edition (H. Anton and C. Rorres, John
Wiley and Sons, 2005).

If you’re already familiar with the transformation of translation (where we
“shift” every point by a certain amount horizontally and vertically), then you
might have wondered why we didn’t include it in this chapter. The reason is
that translation is not a linear map. If we go into the technical definition of a
linear map, it actually demands that it doesn’t matter which order we apply
transformations in. For example, it doesn’t make any difference if we enlarge
something and then rotate or if we rotate it then enlarge it. We only made
a fuss in the chapter about getting the matrix multiplication the right way
around to really drive home the idea that AB doesn’t necessarily equal BA in
general matrix multiplication. We can see that translation doesn’t satisfy this
“order doesn’t matter” property by imagining taking (0, 0) as our (x0, y0). If
we first translate by (1, 0) and then enlarge by a factor of 2 in both directions,
we end up at the point (2, 0). If, however, we do the enlarging first and then
do the translation, we end up at the point (1, 0).

Finding the eigenvalues and eigenvectors for matrices comes up in a whole
variety of situations. Finding equilibrium points in systems of differential equa-
tions is one: imagine there are two connected fish tanks with water flowing,
through pipes, between them. One tank is initially filled with fresh water and
the other is filled with very salty water. To find out what the concentration of
salt in a given tank will be after a long while, we use eigenvectors! Another ex-
ample of an application comes from statistics: if we’re looking at a complicated
random variable whose output is in two dimensions, we can use eigenvectors to
make inferences about the random variable.

Of course, one very obvious way in which we can extend what we’ve done
here is to consider matrices that are larger than 2×2. When we are dealing with
bigger matrices, we need a more general approach to things like the determi-
nant than we developed in the previous chapter. If we’re looking at performing
linear transformations in n dimensions, we’ll definitely be needing square n×n

matrices, and there’s no reason why we should stop at n = 2. If you’d like
to find out a little more, take a look at Basic Linear Algebra (T. Blyth and
E. Robertson, Springer-Verlag, 1998).



8
Separable Differential Equations

Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. Express the following as a single fraction:

3
x + 2

+
x + 5
x2

2. Express the following as partial fractions:

7
x2 − 4

3. Evaluate: ∫
3

x2 + x
dx

4. Solve the following in y:
dy

dx
=

y2

x2
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5. Solve the following in y:

x
dy

dx
= yx2

6. Solve the following in y:

4y2 dy

dx
=

y

x

7. Solve the following in y:

3x2 dy

dx
=

y

x2

8. Solve the following expression. You need not rearrange your answer.

(x2 + 3x)y
dy

dx
= 11

9. Solve the following expression. You need not rearrange your answer.

6
dy

dx
= 2xy2 − 2xy

10. Solve the following expression. You need not rearrange your answer.

3(x2 − 1)
dy

dx
= 6(y2 + 2y)

8.1 Repetition Is the Key to Success

Reading this chapter, you’ll fit into one of two categories. You will either be
one of the people who have already studied a syllabus that deals with variable
separable differential equations and partial fractions very thoroughly, or you
will be one of the people that is completely new to at least one of these two
topics because your syllabus didn’t cover it. We remember that we started
university as comfortable members of the first group, only to become aware
that there were a good number of our peers who fell into the second. These
people struggled with some of the concepts because the topics were dealt with
very quickly, and so we thought it was wise to include them here. If you’re
comfortable with the ideas and the methods employed, you might want to stick
around for some revision. Otherwise, head off to the next chapter. If you’re
new to the topics, then hopefully this chapter will give you a “stepping stone”
up to learning the techniques more rigorously at university.
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Partial Fractions

Imagine being faced with the following problem:

Find
∫

1
x2 − 1

dx.

At a first glance it seems innocent enough, but it is actually surprisingly difficult
if we don’t employ a certain trick. You see, the numerator is not a direct
derivative of the denominator, and so we can’t directly go to natural logarithms
to solve it, nor can we hope for a quick success using a substitution. What we
need to do is split the single fraction up into partial fractions and proceed from
there.

“Partial fractions” is the name given to splitting a single fraction up into
the sum of two or more fractions. Hopefully you’re comfortable with the idea
of combining two fractions into a single one, like this:

1
x
− 1

x + 3
≡ 3

x(x + 3)

But what if we were given the fraction on the right-hand side, and asked to split
it up into the sum of two fractions? How would we go about doing this? Let’s
work through this example to try to get the left-hand side of the expression
back.

The first thing to notice is that the denominator of the combined fraction
is simply the product of the denominators of the single fractions. That means
that we can easily find the denominators of the two single fractions, but getting
the numerators is a bit harder. Let’s call them A and B. What we know is:

A

x
+

B

x + 3
≡ 3

x(x + 3)

Now, if we try to combine our two single fractions in A and B, we get this:

A(x + 3) + Bx

x(x + 3)
≡ 3

x(x + 3)

We know for certain that the denominators will always be the same (because
we worked out what the single fraction denominators were by looking at the
denominator of the combined fraction). This means that we only have to look
at the numerators, and so we get the expression:

A(x + 3) + Bx ≡ 3

At this stage, there are two different methods that we can use to proceed.
Firstly, we can use simultaneous equations to solve the problem – and indeed
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this is the method that we’re going to stick with during the worked examples
that we give. If we equate the constant coefficients, we get 3A = 3, and so A = 1.
Looking at the coefficients in x we have A+B = 0, and so by substituting A = 1
we arrive at B = −1. Setting these two values into the equation above gives us
back:

3
x(x + 3)

≡ 1
x
− 1

x + 3

We’ve succeeded in splitting the single fraction up into partial fractions.
But how about the other method that we mentioned? Well, that relies on

the fact that the expression A(x + 3) + Bx = 3 is actually an identity, and
therefore must hold true for any value of x that we plug into it. This means
that if we choose some nifty values for our x, we can actually simplify the
problem. If we take x = 0 we can see that 3A = 3, and so A = 1. Similarly,
if we choose x = −3, we get −3B = 3, and so B = −1. Notice that these are
exactly the same answers as we got from the simultaneous equations above.
Decide which method you prefer and work at becoming familiar with it – as
we said before, we’re going to stick with the simultaneous equation method for
our worked solutions.

Let’s go back to the example with the integration, where we’re trying to
evaluate: ∫

1
x2 − 1

dx

We know that the first goal is to split the denominator into two parts, and
luckily (x2 − 1) can be expressed as the difference of two squares: that is
(x2 − 1) = (x + 1)(x − 1), so we have the denominators of our two fractions
as (x + 1) and (x − 1). Now, let’s call the numerators A and B again, giving
us the expression:

1
x2 − 1

≡ A

x + 1
+

B

x − 1
Combining the two single fractions, we get the expression:

1
x2 − 1

≡ A(x − 1) + B(x + 1)
x2 − 1

From which we can deduce that A(x − 1) + B(x + 1) ≡ 1. We formu-
late our simultaneous equations by looking at the different coefficients in the
expression – here, we have a coefficient in x (which is 0) and a constant coeffi-
cient (which is 1). So the simultaneous equations that we have are:

A + B = 0

B − A = 1
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Make sure you’re happy with where these equations come from, and then use
any method that you’re familiar with to solve them, to get the solution A = − 1

2

and B = 1
2 . We can now plug these back into our original expression, to get:

1
x2 − 1

≡ − 1
2(x − 1)

+
1

2(x + 1)

Now we can solve the integral originally set out in the problem:∫
1

x2 − 1
dx =

1
2

∫ (
1

x + 1
− 1

x − 1

)
dx

=
1
2
(ln |x + 1| − ln |x − 1|) + k

=
1
2

ln
∣∣∣∣x + 1
x − 1

∣∣∣∣+ k

And there we have it: the quick guide to partial fractions.

And So. . .

There are a few cases where you realise that you can’t find values for A and
B, but these cases are reasonably rare and it’s best to look them up as you
come to them, as different anomalies have to be dealt with differently. Here
we’ve only worked with examples where the denominators are linear, and if
they aren’t then things can change. There is a quick reference guide to some of
the anomalies that can crop up with nonlinear denominators in the appendix
of this book, so at a later date it may be worth taking a trip there and making
up or finding some problems to practice with. For all other cases, where the A

and B method is sufficient, here’s a step-by-step guide for you:

• Look at the denominator of the fraction that you’re trying to split into two.

• Find two things (which might be numbers or a function in x) that would
multiply together to give this denominator.

• These two things are the denominators of your two single fractions. The
numerators of these single fractions are A and B.

• Combine the two single fractions into a combined fraction in A and B.

• Compare this fraction with your original fraction to find A and B (which
often means working through simultaneous equations).

• Substitute your values of A and B into your single fractions, and you’re done!
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Here’s one last worked example before some exercises. This skill is crucial in
all sorts of areas, so the exercise is jumbo-sized as a treat.

Find
∫

3
2t2 − t

dt.

Before we even think about the integration, let’s start with some partial fraction
action. The denominator here is (2t2 − t), which we can express as t(2t − 1),
and so the denominators of the single fractions are t and (2t − 1). We now
introduce A and B as the numerators, so we have:

3
2t2 − t

≡ A

t
+

B

2t − 1
We know that our denominators are fine, so looking just at the numerators
gives:

A(2t − 1) + Bt ≡ 3

Looking at the coefficients in t and constants, we get A = −3 and B = 6. This
means that:

∫
3

2t2 − t
dt =

∫ (
6

2t − 1
− 3

t

)
dt =

6
2

ln |2t − 1| − 3 ln |t| + k

= 3(ln |2t − 1| − ln |t|) + k

= 3 ln
∣∣∣∣2t − 1

t

∣∣∣∣+ k

EXERCISES

8.1.1. Write the following as a single fraction:

3
x + 2

+
2
5

8.1.2. Write the following as a single fraction:

x + 3
5

+
2x − 1

6

8.1.3. Write the following as a single fraction:

x + 3
2x − 1

+
x2

x − 3
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8.1.4. Write the following as a single fraction:

x

5
− 2x

6

8.1.5. Write the following as partial fractions:

4x − 10
x2 − 2x − 8

8.1.6. Write the following as partial fractions:

12x + 16
x2 + 2x − 3

8.1.7. Write the following as partial fractions:

x + 17
x2 + x − 2

8.1.8. Write the following as partial fractions:

2x + 8
x2 − 4

8.1.9. Evaluate: ∫
2x − 2

x(x − 2)
dx

8.1.10. Evaluate: ∫
7x − 5

x2 − 2x − 3
dx

8.1.11. Evaluate: ∫
6x + 11

x2 − 3x − 4
dx

8.1.12. Evaluate: ∫
13x − 55

x2 − 9x + 20
dx
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8.2 Separation of Variables

Now we arrive at the heart of the chapter: variable separable differential equa-
tions. Separating variables is a procedure that we can use as part of the enor-
mous “toolbox” of differential equations, in order to solve a specific type of
problem.

A very basic differential equation problem might ask that we find the solu-
tion to:

dy

dx
= 2x

Hopefully you are comfortable enough with this sort of problem to solve this
“by sight” – that is, state that y = x2 (plus some constant of integration).
Throughout your previous studies you will have learnt lots of different tools to
use in certain situations, such as the trigonometric identities or integration by
parts, for example. Separation of varibles is a similar tool that lets us deal with
problems that are given to us in the form:

dy

dx
= R(x)S(y)

Firstly, let’s decipher exactly what that means. The key thing to note is that
R(x) and S(y) are all functions of the variables stated in the brackets. So to use
separation of variables, we are looking for dy

dx to be equal to some function of x

times some function of y. Now, that might look like the sort of thing that never
crops up, but remember that the number 1 is a function of x and a function of
y, as is 0. Consider these expressions:

• dy
dx = 4

• 7x dy
dx = 1

• 4 dy
dx = 3y

• 6xy dy
dx = 5

• 2x dy
dx = (x2 + 43)(y − 8)

All of these are in the form that we require! As it turns out, separation of
variables is actually a very widely used application.

So, what is the idea behind the separation of variables method? Well, put
simply, it is the process of splitting the xs from the ys and then integrating
both sides of the expression. Sound OK? After it has been mastered, it really
isn’t that different from the simplest of integration problems, but it does take
some practice to get used to.
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Terribly Sorry!

We must apologise, for we will now proceed to tell you lies. You see, dy
dx is a

symbol in its own right, and in normal calculation it is not acceptable to split
it into two parts by multiplying through by dx. For example, we can’t simply
state that if dy

dx = x, then dy = x · dx. What we can do, however, is to state
that

∫
dy =

∫
xdx. There is a rigorous proof of this that you’ll no doubt meet

at university, but knowing it is not helpful in the quest to mastering how to
solve such problems, and so we won’t state it here. The lie that we will tell you
in what follows is that we are “multiplying through by dx, and integrating.”
We are not doing this – it looks like we are, and in order to see the process at
work this is a very helpful thing to imagine. Rest assured, however, that even
though we are not doing what we say we are doing, the proof that we spoke
about says that the result that is obtained from “multiplying through by dx,
and integrating” is still valid: the only catch is that it should be arrived at via
a much longer path.

So, with that in mind, let’s proceed to working through an example to see
separation of variables in action:

Find a solution to 2y
dy

dx
= 4x3.

The first thing to check is that we have the required dy
dx = R(x)S(y) form. With

a quick rearrangement we get R(x) = 4x3 and S(y) = 1
2y , so we’re all ready

for liftoff. When tackling separation of variables problems, the aim is to get all
of the ys on the same side as the dy

dx , and all of the xs on the other side. We
do this by simply rearranging the expression: in this case it means putting it
back how it was in the original statement of the question. When we’re at this
stage we can simply “multiply through by dx, and integrate” (remember about
the lie!), and the problem is pretty much done. So here we go: “multiplying
through by dx, and integrating”:

∫
2ydy =

∫
4x3dx

y2 = x4 + c

y =
√

x4 + c

Hopefully that wasn’t too scary: all that happens is that after “multiplying
through by dx, and integrating,” we rearrange to get an explicit solution in
terms of y. If you’re not too sure about any of the steps, take a closer look: be
careful to note that when we’re adding a constant of integration, we only need
to do it on one side. If you prefer, you can think of this as adding c1 to the
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left-hand side and c2 to the right-hand side, then rearranging the expression to
get c2 − c1 on the right-hand side and substituting c = c2 − c1, because we’re
dealing with constants. If you’re happy then move on to this next (slightly more
involved) example:

Find a solution to
dy

dx
= x2y, given that y �= 0.

Again we can see that our equation is in the required dy
dx = R(x)S(y) form, so

we may begin. Remember our preliminary goal in these problems:

Get all of the ys on the same side as the dy
dx , and all of the xs on the other side.

Unlike the last example, this isn’t already done for us here. Doing it isn’t really
difficult at all, though: we have an extra y multiplied on the right-hand side,
so all we do is divide through by a y (this time it isn’t a lie, we really are
allowed to divide through by a y, so long as we know y �= 0). This gives us the
expression:

dy

dx
· 1
y

= x2

And now we have what we need: all of the ys with the dy
dx and all of the xs on

the other side. All that remains for us to do is to “multiply through by dx, and
integrate,” giving us:

dy

dx
· 1
y

= x2∫
1
y
dy =

∫
x2dx

ln |y| =
x3

3
+ k

y = e
x3
3 +k

= Ae
x3
3

Hopefully you’ve seen the trick with changing our constant of integration to A

before: all we’re doing is exploiting the fact that e
x3
3 +k = ek · e

x3
3 , and then

setting A = ek.
So there we have it: a brand new skill for you to try out. So long as the

original problem is in the dy
dx = R(x)S(y) form we can use the separation of

variables to find a solution, and the only key thing to remember is to get all
of the ys on the same side as the dy

dx and all of the xs on the other side. From
then on, “multiplying through by dx, and integrating” gives a pretty standard
problem to solve. Now it’s time to try out your new weapon in the never-ending
battle with integration:
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EXERCISES

8.2.1. Solve the following in y:

dy

dx
= 2x + 3

8.2.2. Solve the following in y:
dy

dx
=

x

y

8.2.3. Solve the following in y:
dy

dx
=

y

x

8.2.4. Solve the following in y:
dy

dx
= xy

8.2.5. Solve the following in y:
dy

dx
x =

1
y

8.2.6. Solve the following in y:

dy

dx
y2 = 2xy

8.3 Combining the Tools

So far in this chapter, we’ve looked at partial fractions and variable separable
differential equations. This may seem rather strange, as they have been two
separate, unconnected ideas. However, if we look at the standard form of an
equation which we tackle with separation of variables [i.e., dy

dx = R(x)S(y)], it
becomes apparent that the two tools are part of the same arsenal.

We start with functions in x and y on both sides of the equation, and
by the time we integrate we have only ys on the same side as the dy

dx and
only xs on the other side. In the section above, we could then simply proceed
to the integration, but these were very carefully chosen examples! In reality,
the “normal” thing to expect is an expression that requires the use of partial
fractions, at least once, in order to proceed. Here’s an example to illustrate:

Find a solution to
dy

dx
= xy2 + xy
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The first stages are as before, so let’s plough straight through them:

dy

dx
= xy2 + xy

= x(y2 + y)∫
1

y2 + y
dy =

∫
xdx

At this point, hopefully the difficulty is clear: while we have no problem inte-
grating x, we can’t directly integrate 1

y2+y . I’m sure you’ll have guessed how
we proceed: partial fractions. Here we go:

A

y
+

B

y + 1
=

1
y2 + y

A(y + 1) + By = 1

A = 1

B = −1

From here, it’s just business as usual, and so:∫ (
1
y
− 1

y + 1

)
dy =

∫
xdx

ln |y| − ln |y + 1| =
x2

2
+ k

ln
∣∣∣∣ y

y + 1

∣∣∣∣ =
x2

2
+ k

At this point we’re done. Depending on what the result is needed for, it may
sometimes be beneficial to get rid of the logarithms – for example, if the equa-
tion is being used by an engineer to model a real situations, they may want to
get rid of logarithms in order to make interpolation easier. For our purposes,
however, the expression above is perfectly acceptable.

Double Trouble

Hopefully the previous example will prove to you that problems like this really
aren’t too scary, so long as you have the two individual skills (i.e., partial
fractions and separation of variables) mastered. The only real complication
that can rain on our parade is needing to use partial fractions twice: one final
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example will illustrate this better than we can explain it in words, but it really
isn’t anything extra to be afraid of.

Find a solution to
dy

dx
3(x2 + x) = 2(y2 − 1)

Again, the first few steps are standard, so I’ll just write them out:

dy

dx
3(x2 + x) = 2(y2 − 1)

dy

dx

3
y2 − 1

=
2

x2 + x∫
3

y2 − 1
dy =

∫
2

x2 + x
dx

Hopefully you’ve spotted what’s going on here: we now have trouble integrating
both sides of the equation. How do we tackle this? We just put each side into
partial fractions, and then go on as before. First, let’s deal with the ys:

A

y + 1
+

B

y − 1
=

3
y2 − 1

A(y − 1) + B(y + 1) = 3

B − A = 3

A + B = 0

B =
3
2

A =
−3
2

And now let’s take a look at the xs:

C

x
+

D

x + 1
=

2
x2 + x

C(x + 1) + Dx = 2

C = 2

D = −2

Once the partial fractions are sorted, we resume our scheduled broadcast:

3
2

∫ (
1

y − 1
− 1

y + 1

)
dy = 2

∫ (
1
x
− 1

x + 1

)
dx

3
2

ln
∣∣∣∣y − 1
y + 1

∣∣∣∣ = 2 ln
∣∣∣∣ x

x + 1

∣∣∣∣+ k

And now for a commercial break:
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EXERCISES

8.3.1. Solve the following:
dy

dx
+ 1 = y2

8.3.2. Solve the following:
dy

dx
+ y = y2

8.3.3. Solve the following:
dy

dx
(x2 − 3x) =

6
y

8.3.4. Solve the following:
dy

dx
(x2 − 1) =

7
2y

8.3.5. Solve the following:

dy

dx
5(x2 − 3x) = 6(y2 + y)

8.3.6. Solve the following:

dy

dx
4(2x2 + 2x) = 9(y2 − 1)

Where Now?

Partial fractions come in handy in all sorts of situations in mathematics, and
so forming them is a skill that we get to use again and again. As we said in
the section itself, there are rare cases where the standard A and B approach
won’t produce a solution: if you’re keen to find out about this, there’s some
information in A First Course in Differential Equations (J. Logan, Springer,
2006).

In the grand scheme of things, the separation of variables is one of many
tools that we can use when faced with calculus problems. It is only useful in
certain situations, but it is a very helpful tool in the right circumstances. At
university, you’ll see the proof that we really can do what looks like “multiplying
through by dx and integrating.”

Separable differential equations are a great way to “feel” the mathematics of
the real world in action. Lots of real-life processes can be modelled by equations
of this type: An Introduction to Ordinary Differential Equations (J. Robinson,
Cambridge University Press, 2004) is a great place to explore this kind of
mathematics.
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Integrating Factors

Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. What form must an equation be in for us to make use of an integrating
factor?

2. What is the integrating factor for the equation dy
dx + 4x3y = 7x?

3. What is the integrating factor for the equation dy
dx + 2 y

x = 14x2?

4. Find the integrating factor for the following expression, and multiply
through by it:

2
dy

dx
+ 10x4y = 6x2

5. Rewrite the following expression in the form d
dx (A(x)y) = B(x):

2x
dy

dx
+ 2y = 17x2
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6. Rewrite the following expression in the form d
dx (A(x)y) = B(x):

e2x3 dy

dx
+ e2x3

6x2y = 12

7. Find the integrating factor of the following equation and hence write it in
the form d

dx (A(x)y) = B(x):

3
dy

dx
+ 6xy = 12x3

8. Find a solution to the following equation by making use of an integrating
factor:

dy

dx
+

y

x
= 8

9. Find a solution to the following equation by making use of an integrating
factor:

dy

dx
+ 2xy = 10x

10. Find a solution to the following equation by making use of an integrating
factor:

dy

dx
+

y

x
= ex

9.1 Troubling Forms

As part of the long battle to solve differential equations, we develop an ever
expanding “toolbox” of tricks that allows us to deal with more and more types
of problems. One such trick is that of integrating factors, and throughout this
chapter we’re going to look at how these cunning fellows allow us to tackle a
whole new range of questions.

This chapter is a little different from many of the others in that we’re
not going to “develop” the skill through increasingly difficult examples. The
process of using integrating factors is quite lengthy and so what we’re going
to do is build up to solving problems through the three sections, but we won’t
actually have all of the tools in place to go ahead and solve problems until
the final section. We apologise if this feels a little like wading in the dark, but
the process is fairly complicated to get to grips with so it’s better to be very
accurate at all of the different stages than it is to muddle through problems
before you’re really ready.
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Form and Function

The type of problems that can be solved using an integrating factor are all of
a specific form. That is, we need the problem to be in the form:

dy

dx
+ P (x)y = Q(x)

Remember what the notation means: we need a dy
dx term added to y lots of

some function in x, and then we need all of that to equal some other function
in x. Just as we saw in the previous chapter, although this looks like it would
only happen on rare occasions, we can actually find differential equations of
this form all over the place in mathematics.

Once we have identified that a problem is in the correct form, we can get
to work. The basic idea of the integrating factors technique is to transform
something that we can’t directly integrate into something that we can, by
multiplying through by some other function. In this section we’re going to
look at the way we find this other function – or to give it its proper title, the
integrating factor.

Exponents and Multiplications

Although we’re not going to look at a formal proof of why it is so, we can
quickly and easily state what the integrating factor is. The proof is definitely
valid, but in solving problems it is really of no use to us and so it is omitted
here. Get ready – here comes the biggie:

For an expression dy
dx + P (x)y = Q(x), the integrating factor is e

∫
P (x)dx.

Look carefully: that is e to the power of the integral of P (x), with respect to
x. In other words, we find the integral of P (x) with respect to x, and then take
this as the power of e. This may seem a little odd, but it most certainly works.

One quick thing to note is that if you hate constants of integration, you’re
in for a treat. When we do the integration at this stage, we totally ignore any
constant of integration, and just put our e to the power of what we actually
get in the process of integrating (because any constants would only “drop out”
later in our working). With that in mind, let’s look at a worked example:

If dy
dx + 4xy = 12, what is the integrating factor?

Firstly, let’s do a quick check that this expression is definitely in the form that
we require. We need dy

dx + P (x)y = Q(x), and so if we consider P (x) to be 4x

and Q(x) to be 12, then we’re ready to go. Now, remember what we need to do
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to find the integrating factor: We need to find e
∫

P (x)dx. We’ve just identified
P (x) to be 4x, and so the integrating factor here is going to be e

∫
4xdx. That’s

not too difficult to solve: remembering to ignore the constant of integration, we
find that the integrating factor is e2x2

. That’s it! We’re not yet concerned with
how to use it, and the question only asked us to find the integrating factor,
which is exactly what we’ve done. The answer to the problem is e2x2

.
Hopefully that wasn’t too painful to follow. Although we’re going to leave

the idea of why an integrating factor is useful to us until the next section, one
thing that we can definitely do already is multiply through by our integrating
factor so that we’re ready to proceed with the problem. Here’s an example that
requests exactly that:

Find the integrating factor for the equation 2 dy
dx + 4 y

x = 12, and then
multiply both sides of the equation by it.

Again, our first task is to identify P (x), so that we know what we’re going
to need to integrate. Here it’s hidden slightly better: let’s look at the form that
the problem has to be in, so that we can try to find it.

We can see that the equation is not quite in the form dy
dx + P (x)y = Q(x),

because there is a 2 at the beginning. Before we go anywhere, we need to divide
through by that 2 to get rid of it. The expression that we get from doing this
is dy

dx + 2
xy = 6. Comparing this to the standard form of dy

dx + P (x)y = Q(x)
shows us that P (x) must be 2

x .
Now we move on to the integration: We know that the integrating factor

here must be e
∫ 2

x dx, which is e2 ln x. At this stage we need to make use of a
couple of tricks. First and foremost, we know that 2 lnx is the same as ln x2,
and so we can write our integrating factor as eln x2

. Secondly, eln k is simply k,
for all values of k. This means that eln x2

is simply equal to x2. Now that we’ve
simplified the result of the integration, we can say that x2 is the integrating
factor.

The other thing that the question asks of us is to multiply through by the
integrating factor. We do this in preparation for the next step, which we’ll
explore in the next section, but for now it’s just a case of “doing as we’re
told.” The result of multiplying the dy

dx + P (x)y = Q(x) form of the expression
through by the integrating factor is therefore x2 dy

dx + 2xy = 6x2. So long as
you’ve followed what’s going on here, it’s time for some exercises. If not, take
another look – enlightenment shouldn’t be too far away.
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EXERCISES

9.1.1. If dy
dx + P (x)y = Q(x), what is the integrating factor?

9.1.2. What is the integrating factor for the equation dy
dx + 3y = 8x + 6?

9.1.3. What is the integrating factor for the equation dy
dx + 4xy = 16x?

9.1.4. What is the integrating factor for the equation 3x dy
dx + 9x2y = 1?

9.1.5. What is the integrating factor for the equation dy
dx + y

x3 = 7?

9.1.6. What is the integrating factor for the equation 4x dy
dx + 8y = 16x2?

9.1.7. By expressing it in the dy
dx + P (x)y = Q(x) form, find, and multiply

through by, the integrating factor for the following equation:

2
dy

dx
+ 2

y

x
= 12

9.1.8. By expressing it in the dy
dx + P (x)y = Q(x) form, find, and multiply

through by, the integrating factor for the following equation:

dy

dx
+ 3x2y = 4x

9.2 Productivity

In the previous section, we’ve been to great lengths to find this elusive “inte-
grating factor” character, and then to multiply through by it. But why? What
is it doing? How is that helping? The answer lies in the products.

The Product Rule

Hopefully you’ll already be familiar with the product rule for differentiation,
which says that:

d

dx
(M(x)N(x)) = M ′(x)N(x) + M(x)N ′(x)

But how does the product rule have anything to do with what we’ve just been
up to? Well, as it turns out, by multiplying through by the integrating factor
we’ve set ourselves up for a magnificent trick.

If we look at any of the above examples where we’ve multiplied through by
an integrating factor, the left-hand side of the equation has a special property:
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it looks just like what we’d expect to see if we’d used the product rule to
differentiate some function. Let’s pick up on the second of the worked examples
from the previous section – we’ve already done all of the legwork and found
the integrating factor, and after multiplying through by it we have:

x2 dy

dx
+ 2xy = 6x2

Take a look at the left-hand side, where we have x2 dy
dx + 2xy. What function is

this the derivative of? Well, in the first term we have x2 dy
dx , and in the second

term we have 2xy. Clearly the y is the thing that has been differentiated in the
first term, and the x2 is the thing that has been differentiated in the second,
and so d

dx (x2y) would, by the product rule, give us x2 dy
dx + 2xy. This means

that our original, enormous expression can now be written as d
dx (x2y) = 6x2.

Amazing! It may take a little while to see this, so don’t be disheartened if you
can’t spot it right away, but keep on looking and eventually it will suddenly
slap you in the face. In a nice way.

Now that we’ve discovered this fantastic trick, you may be wondering what
the purpose of using it is. Well, that will come in the next section, but for now
just enjoy the excitement of the fact that we can take the original problem, re-
arrange it, find an integrating factor, multiply through by it and then express
the left-hand side as the derivative of some function! That is, the aim of what
we’re doing is to take some expression in the form dy

dx +P (x)y = Q(x), and put
it into the form d

dx (A(x)y) = B(x). Here’s another worked example with which
to do exactly that – follow all of the steps carefully and ensure that you know
what we’re doing, when we’re doing it:

By finding an integrating factor, express dy
dx + 2xy = 20x in the form

d
dx (A(x)y) = B(x).

First up, it’s integrating factor time. Hopefully you’re well enough rehearsed
in this to spot that it’s e

∫
2xdx, which is ex2

. Multiplying through by that gives
us the expression:

ex2 dy

dx
+ ex2

2xy = 20xex2

From here, we take the left-hand side and see that in the ex2 dy
dx term, a y

must have been differentiated, and in the ex2
2xy term, an ex2

must have been
differentiated. This means that the left-hand side of the expression can be
written as d

dx (ex2
y), and so the solution to the whole problem is just d

dx (ex2
y) =

20xex2
. Again, as we said before, if you’re not seeing that crucial “product rule”

step, take a good look at the problem. When you think you’ve got what it takes,
have a battle through these:
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EXERCISES

9.2.1. Rewrite the following equation in the form d
dx (A(x)y) = B(x):

3x
dy

dx
+ 3y = 12x

9.2.2. Rewrite the following equation in the form d
dx (A(x)y) = B(x):

4x2 dy

dx
+ 8xy = ex2

9.2.3. Rewrite the following equation in the form d
dx (A(x)y) = B(x):

e3x dy

dx
+ 3e3xy = 16

9.2.4. Rewrite the following equation in the form d
dx (A(x)y) = B(x):

ex2 dy

dx
+ 2xex2

y = 8x

9.2.5. Find the integrating factor for the following equation, and hence
write it in the form d

dx (A(x)B(y)) = C(x):

dy

dx
+ 6xy = 4x

9.2.6. Find the integrating factor for the following expression, and hence
write it in the form d

dx (A(x)B(y)) = C(x):

2
dy

dx
+ 4

y

x
= 2x2

9.3 The Finishing Line

So we’ve done all this hard work and we’ve transformed an equation from the
form dy

dx + P (x)y = Q(x) into the form d
dx (A(x)y) = B(x). Great. But why?

Well, once we have our equation in the form d
dx (A(x)y) = B(x), we’re so

near the end of the problem that you can already sense the mass celebrations.
You see, once we’ve reached the stage where d

dx (A(x)y) = B(x), we can just
integrate both sides of the equation and we have a solution. Integrating the
right-hand side shouldn’t be a problem because that’s just a function, and now
that we’ve got the left-hand side in the special form, integrating that is even
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easier, because we simply lose the d
dx and we’re done! Let’s pick up on the last

worked example that we left, where we had the expression as:

d

dx
(ex2

y) = 20xex2

Integrating both sides:∫ (
d

dx
(ex2

y)
)

dx =
∫

20xex2
dx

Let’s sort out the left side first, because that’s so quick that if you blink you’ll
miss it:

ex2
y =

∫
20xex2

dx

Now for the right-hand side. Although integrating 20xex2
with respect to x

may seem difficult, if we keep in mind that 2xex2
is the derivative of ex2

, then
we can quickly see that we can integrate the right-hand side to get 10ex2

(take
a quick look over this if you’re not sure; it comes up often in these sorts of
problems – remember that integrating is just the opposite to differentiating in
this case).

Therefore, the solution to our whole problem is simply ex2
y = 10ex2

+ k.
Sadly, unlike earlier, we do need to include that constant of integration now,
because we’re doing a standard sort of integration, not a neat trick. But just
as in the last chapter, we only need to add k to one side: we can think of it
as adding k1 to the left-hand side, k2 to the right-hand side, and then letting
k = k2 − k1. We can then tidy our answer up a bit to give a solution purely in
terms of y. This is y = 10 + ke−x2

.
And there we have it. It’s taken a while, but we’ve made it all the way

through a problem. Here’s a guide to all the steps of the journey:

• Make sure that the initial expression is in the form dy
dx + P (x)y = Q(x).

• Find the integrating factor, which is e
∫

P (x)dx.

• Multiply through by it.

• Looking for the effects of the product rule, rewrite the left-hand side so that
the expression is of the form d

dx (A(x)y) = B(x).

• Integrate both sides with respect to x, remembering to include a constant of
integration.

• If possible, rewrite the solution as y in terms of x.

With that list as our guide, here’s one final worked example and some exercises
as dessert.
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Solve dy
dx + y

x = 7.

We have the form that we need, so all systems are go. The integrating factor
here is e

∫ 1
x dx, which is eln x, which is simply x. Multiplying through by the

integrating factor gives:

x
dy

dx
+ y = 7x

Rewriting this in the form d
dx (A(x)y) = B(x) gives:

d

dx
(xy) = 7x

Integrating both sides with respect to x:∫ (
d

dx
(xy)

)
dx =

∫
7xdx

Performing the integration gives xy = 7x2

2 + k, which we can tidy up to give
the final solution as y = 7x

2 + k
x .

The only final thing that we may want to do is to use some initial conditions
to find the constant of integration. If, for example, we were given the set of
initial conditions x = 1, y = 2, we can substitute these in to our solution to
get 2 = 7

2 + k, and hence deduce that k = −3
2 .

EXERCISES

9.3.1. Solve dy
dx + y

x = 2 by making use of an integrating factor.

9.3.2. Solve x2 dy
dx + xy = x by making use of an integrating factor.

9.3.3. Solve dy
dx + 3y = 4 by making use of an integrating factor.

9.3.4. Solve dy
dx + 2xy = 6x by making use of an integrating factor.

9.3.5. Solve dy
dx + 4x3y = 4x3 by making use of an integrating factor.

9.3.6. Solve dy
dx + 3x2y = 9x2, with initial conditions x = 0, y = 0, by

making use of an integrating factor.

Where Now?

The integrating factor is a very useful method of getting an exact, algebraic
answer to a differential equation. While iterative techniques on computers can
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now quickly give a numerical answer to many differential equation problems
with initial conditions, finding an algebraic solution is both more useful and,
of course, more satisfying!

One of the most famous uses of integrating factors is in Newton’s law of
cooling. You’ll no doubt find out about this in your degree studies, but An Intro-
duction to Ordinary Differential Equations (J. Robinson, Cambridge University
Press, 2004) covers the subject very well, and has a good set of exercises to try.
Newton’s law of cooling is a very real, very useful concept, and it has a huge
range of applications in the real world. Aside from telling you how long you
have to wait for your coffee to be cool enough to drink, it is used by forensic
experts in order to determine the time of death when they find a body!
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Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. At time t = 0, a particle is travelling with a velocity of 4ms−1. The particle
undergoes an acceleration of 2ms−2 for 10 seconds. Use integration to find
the velocity and displacement of the particle after the 10 seconds have
passed.

2. In a scientific experiment, a particle is made to accelerate at 2
t2 ms−2. After

2 seconds have passed, it is recorded as having a velocity of 4 ms−1 and
a displacement of 2 m. Find the velocity and displacement after another 2
seconds have passed.

3. What are Newton’s three laws of motion?

4. What force would be required to make a particle of mass 5 kg accelerate
at 3 ms−2?

5. Throughout its short flight, a large firework is modelled as having a mass
of (20− t) kg and travels at a velocity of (3t2 + 2) ms−1. Find the force on
the firework when t = 5.
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6. A sandbag of mass 40 kg is dropped from a hot air balloon. The drag
coefficient of the bag is 8. What is the greatest speed that the bag could
possibly reach, even if it were allowed to fall for an unlimited amount of
time? Use the value g = 9.8 in your answer.

7. A box is thrown from the top of a high building and it reaches its terminal
velocity of 15 ms−1. The drag coefficient acting on the box is 20. Find the
mass of the box.

8. A mass of 4 kg is suspended from the ceiling by two strings. The string on
the left makes an angle of 60◦ with the horizontal, and the string on the
right makes an angle of 30◦ with the horizontal. Find the tension in each
string.

9. A box of mass 1 kg is placed on a slope, which makes an angle of 45◦ with
the horizontal. The box is on the point of sliding down the slope. Find the
magnitude of the frictional force holding the box in place.

10. A box sits on a truck’s loading bay. When the driver activates the loading
mechanism, the bay tilts at a rate of 1 degree per second. The mass of the
box is 100 kg and the coefficient of friction is 1√

3
. How long will the driver

have to wait before the box starts to slip down the loading bay?

10.1 Where You Want to Be

Many students going into university have some experience in mechanics.
Whether this be through their studies in a specific mechanics module, from
their studies in physics or from another source entirely, a good number of un-
dergraduates won’t be meeting mechanics for the first time at university. How-
ever, if you’ve never seen anything of the sort before, don’t despair – you’re
probably not as behind as you think. Much of the mechanics before univer-
sity has to do with working with specified formulae. Mechanics at university is
very different : in your degree studies, you’ll be much more focussed on deriving
where equations come from, and looking at why things function as they do. So
please don’t worry – if you’ve never heard of acceleration before, or if you’ve
studied mechanics pretty solidly over the past couple of years, this chapter is
going to take what you’re already familiar with and shape it so that you’re
ready to tackle the kind of tasks that you’ll be meeting in your degree.
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Acceleration, Velocity and Displacement

First up, we’re going to take a look at some of the different ways that we
can describe an object. In mechanics we mainly talk about particles, but don’t
worry too much about this if you’re unfamiliar with the idea. For our purposes,
all this means is that we treat objects as though they are perfectly rigid, are
not affected by air resistance, and that all of their mass is concentrated in a
single point. Basically, all we’re saying is that in our calculations we’re going
to simplify the “real-world” situation just enough to be able to ignore some of
the annoying factors that we would have to deal with if we did the experiments
in real life.

When we’re talking about a particle, three of the important factors that
we need to describe are the particle’s acceleration, a, its velocity, v, and its
displacement, x. Let’s now take a closer look at each of these ideas in turn:

• Displacement: if you’ve not studied mechanics before, this word is probably
new to you. Displacement is simply the distance that something is from a
given point, but it is a vector quantity and so it can be negative. For example,
if a particle is 2 m to the right of the origin, we would say that its displacement
from the origin is 2 m and its distance from the origin is 2 m. If, however, a
particle is 2 m to the left of the origin, we would say that its displacement
from the origin is −2 m, but its distance from the origin is still 2 m. The
standard unit of displacement is metres.

• Velocity: this is the rate of change of displacement of the particle. In me-
chanics, we don’t often use the word “speed,” because speed does not include
any notion of direction, whereas velocity can be either positive or negative,
and is therefore more helpful to us. The standard unit of velocity is metres
per second, ms−1.

• Acceleration: this is the rate of change of velocity of the particle. If at time
t = 0 the particle is travelling at 10 ms−1 and at time t = 1 the particle
is travelling at 20 ms−1, in one second the particle’s velocity has increased
by 10 ms−1, so the acceleration is simply 10 ms−2. Notice that the units of
acceleration are ms−2: metres per second squared. This is because what we’re
actually looking at is the change in metres per second, per second. Be sure
to remember that acceleration is a vector quantity: it has both a magnitude
and a direction.

You’ll notice that we’re very interested in using vector quantities in mechanics –
that is, we need to be careful in deciding whether things are happening (be it
displacement, velocity or acceleration) in the positive or in the negative direc-
tion. The good news is that when we first approach a problem in mechanics,
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we are free to choose which direction is the “positive” direction, so long as
we remain consistent throughout the question. With mathematicians being the
cunning fiends that they are, it comes as no surprise that people choose their
“positive” direction to be the one that makes all of the subsequent calculations
the easiest to compute.

Now we’ve got these definitions stated, we can start to examine some of the
ideas in a more mathematical way. Looking again at the definition of accelera-
tion, we say that this is the rate of change of velocity. In the example there, we
had a time interval of 1 second and so the calculation was purely numerical.
But how about if the time interval were much smaller? How about if it were
infinitesimally small? Hopefully you see where we’re headed: calculus.

When we say that acceleration is “the rate of change of velocity,” this means
that mathematically we must be dealing with the expression:

a =
dv

dt

If we consider a time interval where t0 is the start time and t1 is the end
time, we can integrate both sides with respect to t to obtain the very useful
expression for “change in velocity,” Δv:

Δv =
∫ t1

t0

a dt

Now, if we consider what Δv actually means, we can proceed to find one last
useful formula. The expression Δv is the change in velocity, and so we can
express this as being the velocity at the end of the interval minus the velocity
at the beginning: v1 − v0. Substituting this into our equation and rearranging,
we get:

v1 = v0 +
∫ t1

t0

a dt

We can generalise this statement a little further. In any problem, the starting
velocity is a fixed number, but at any given moment the present velocity is
actually a function of time. Think about that to make sure you’re happy:
velocity certainly varies with time, but once we’ve defined when t0 is, whatever
the velocity was at t0 is a fixed quantity because what’s done is done. This
means that, for any tn in the interval t0 to t1:

v(tn) = v0 +
∫ tn

t0

a dt
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Second Order

Now that we’ve taken a look at acceleration in terms of velocity, we can go
one step further. We defined velocity as being “the rate of change of displace-
ment,” and so using the same logic as we did with acceleration we arrive at the
expression:

v =
dx

dt
Now we have the opportunity to do something clever. We know that a = dv

dt

and v = dx
dt . How about combining those two statements? If we differentiate

displacement we get velocity and if we differentiate velocity we get acceleration.
Have you guessed where we’re headed yet? The expression that we derive is:

a =
dv

dt
=

d2x

dt2

Pretty handy, I’m sure you’ll agree.
Now that we’ve got all of these beauties in place, all that remains between

us and some examples is to look at one final expression. We found an expression
for v1 by first finding one for Δv, so is it possible to find one for x1? Let’s see
what happens:

d2x

dt2
= a

v(tn) = v0 +
∫ tn

t0

a dt

But remember that v = dx
dt , so:

dx

dt
(tn) = v0 +

∫ tn

t0

a dt

Now let’s integrate everything with respect to tn:∫ t1

t0

dx

dt
(tn) dtn =

∫ t1

t0

v0 dtn +
∫ t1

t0

(∫ tn

t0

a dt

)
dtn

x(t1) − x(t0) =
∫ t1

t0

v0 dtn +
∫ t1

t0

(∫ tn

t0

a dt

)
dtn

But x(t0) is “x at time t0,” which we also call x0, and x(t1) is “x at time t1,”
which we also call x1. This notation makes everything look a little tidier:

x1 − x0 =
∫ t1

t0

v0 dtn +
∫ t1

t0

(∫ tn

t0

a dt

)
dtn

x1 = x0 + v0(t1 − t0) +
∫ t1

t0

(∫ tn

t0

a dt

)
dtn
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And there we have it, our final expression of this section. If you’ve done some
mechanics dealing with “the SUVAT equations” before, doing the integration
reveals a pleasant surprise: this whole expression yields the familiar friend
s = ut+ 1

2at2 when we have constant acceleration. If you’d like to see how, this
is explored in the “Where Now?” section at the end of the chapter. Now for
some worked examples of this crazy new stuff in action:

A particle is measured to be moving with an acceleration of 2 ms−2, and at
time t0 = 0 its displacement is 5 m and its velocity is 3 ms−1. Find the velocity
and displacement of the particle after 10 seconds.

If you’ve done mechanics before, fight the urge to go to the SUVAT equations.
These are a tool to help beginners. If you’ve never learned these equations, it’s
almost a blessing in disguise, because you won’t be tempted to use them. Now
that we’re in with the big boys, we’re using calculus all the way. Let’s do the
velocity first:

v1 = v0 +
∫ t1

t0

a dt

= 3 +
∫ 10

0

2 dt

= 3 + [2t]100

= 3 + (20 − 0)

= 23ms−1
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And now for the displacement:

x1 = x0 + v0(t1 − t0) +
∫ t1

t0

(∫ tn

t0

a dt

)
dtn

= 5 + 3(10 − 0) +
∫ 10

0

(∫ tn

0

2 dt

)
dtn

= 5 + 30 +
∫ 10

0

(
[2t]tn

0

)
dtn

= 35 +
∫ 10

0

2tn dtn

= 35 +
[
tn

2
]10
0

= 35 + (100 − 0)

= 135m

Hopefully you followed along – all that happened was integration. Don’t be
afraid to try doing this example again by yourself, and checking that you get
the same answer: This kind of problem is absolutely fundamental to mechanics,
and so it’s a key skill to get to grips with.

When you’re totally happy, here’s another worked example, and then a set
of exercises for you to tackle on your own:

A moving metal particle is in a magnetic field and undergoes an accel-
eration so that at time t, the acceleration of the particle is 6

t2 . After 2 seconds
have passed, the location of the particle is marked, and this point is labelled
x0. At this time, the velocity of the particle is 2 ms−1. What is the velocity
and displacement of the particle after another second passes?

The key difference between this question and the previous one is the way that
the data is presented. Before, we got everything that we needed to know fed
to us by the question, but here we need to extract our information from what
we’re told about the experiment. Firstly, we need to find the values of t0 and
t1. This isn’t too difficult: the measurement that we’re given is taken after 2
seconds, and our answer is going to be about the particle after a further second
has passed. This means that t0 = 2 and t1 = 3. Now, at t0 we know that the
velocity of the particle is 2 ms−1 and so we know that v0 = 2. Finally, we
have our expression for acceleration. In this instance it’s dependent on time,
but that doesn’t change anything in our working so we simply state a = 6

t2 .
Now that we have extracted all of the numerical data that we need from the
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problem, let’s go about solving it:

v1 = v0 +
∫ t1

t0

a dt

= 2 +
∫ 3

2

6
t2

dt

= 2 +
[−6

t

]3

2

= 2 +
(−6

3
+

6
2

)
= 2 − 2 + 3

= 3ms−1

x1 = x0 + v0(t1 − t0) +
∫ t1

t0

(∫ tn

t0

a dt

)
dtn

= 0 + 2(3 − 2) +
∫ 3

2

(∫ tn

2

6
t2

dt

)
dtn

= 2 +
∫ 3

2

([−6
t

]tn

2

)
dtn

= 2 +
∫ 3

2

(
3 − 6

tn

)
dtn

= 2 + [3tn − 6 ln |tn|]32

= 2 + (9 − 6 ln 3) − (6 − 6 ln 2)

= (5 + 6(ln 2 − ln 3))m

EXERCISES

10.1.1. At time t = 0, a particle moves with a velocity of 3 ms−1 and is
accelerating at 5 ms−2. Find the velocity of the particle at t = 5.

10.1.2. How far would the above particle travel in 10 seconds?

10.1.3. A particle has an initial velocity of 20 ms−1 and accelerates at a
rate of 4 ms−2. What velocity will the particle be travelling at after
3 seconds?
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10.1.4. A bullet is travelling at 26 ms−1 when it enters some water and ac-
celerates at a rate of −4 ms−2. How far will the bullet travel through
the water in 2 seconds?

10.1.5. A ball moving along a surface has an acceleration of 6t. At time
t = 2, the ball has a velocity of 2 ms−1, and a displacement of 40 m.
What velocity and displacement will it have at t = 10?

10.1.6. A charged particle moves through an energy field and undergoes an
acceleration of 1

t2 . The particle travels for 5 seconds and then is
measured to have a velocity of 8 ms−1 and a displacement of 0. Find
the velocity of the particle after a further 2 seconds have passed and
the displacement of the particle 14 seconds after it started moving.

10.2 Faster! Faster!

I’m sure that at many times in your life, you’ll have come across the name
Isaac Newton. Newton really was the “inventor” of modern science, and a
great deal of what we know today is thanks to the genius with the apple tree.
In mechanics, one of Newton’s most famous discoveries were his three laws of
motion. Updated into the language of today, these are:

• Newton’s First Law: A body will continue in uniform motion unless acted
upon by a force.

• Newton’s Second Law: Force equals rate of change of momentum.

• Newton’s Third Law: For every action, there is an equal and opposite
reaction.

While all of these laws are vitally important in their own right, we’re going
to look more closely at the second law. The key thing to notice here is that the
law probably doesn’t say what you thought it would. Most people incorrectly
state the second law as F = ma. This is true in many cases, but it’s not actually
what the law is saying. If we blindly use F = ma, then we’re actually making
a simplification of the law, and in some cases this will give us an answer that
is just plain wrong. Let’s investigate this further.

Pitfalls and Temptations

Newton’s second law, correctly stated, says:
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F =
dp

dt
where p is the letter that we use for momentum. If you’ve met the concept of
momentum before you’ll know that p = mv. If you haven’t seen this before,
don’t worry – all we’re saying is that the momentum of an object is equal to
the object’s mass multiplied by its velocity. Making the substitution p = mv

into Newton’s second law yields:

F =
d

dt
(mv)

It’s time to don those safety goggles. This is the step where Joe Public ploughs
in and rearranges the equation to F = mdv

dt , and gets F = ma. But we’re better
mathematicians than your average bear, and so we’re not going to do that be-
cause it’s wrong! Moving the m term away from the instruction to differentiate
is making the assumption that mass is not a function of time. If, in a certain
problem where mass is constant, this is true – and this accounts for the “many
times” when F = ma does yield the correct solution. This is OK, but there are
cases when the mass of the object will vary with time.

Consider an aeroplane. As it moves through the sky, it steadily uses up
fuel. Not a phenomenal amount in a short space of time, but the mass of the
aeroplane does decrease over the duration of a flight. The same is obviously
true of cars and rockets as well. Imagine a snowball sliding down a large hill.
As the snowball moves, it picks up more and more snow from the ground, and
so its mass is increasing as it moves. At high velocities, when we need to take
into account Einstein’s work on relativity (don’t worry, that’s beyond the scope
of this book!), the mass of every object is a function of time. Clearly, to make
the assumption that the mass of a moving object is independent of time is not
good enough.

How do we deal with this problem then? Well, in fact it’s not too hard at
all. Because both mass and velocity are functions of time, we have two functions
in t that are multiplied together, and we need to differentiate. We need to call
on a powerful weapon. You guessed it: the product rule.

If we differentiate using the product rule, we get the result:

F = m
dv

dt
+ v

dm

dt
Looking closely at what we have here is very encouraging. If we make the
assumption that the mass of an object is independent of time, then the dm

dt term
takes the value 0. This is great, because then all we’re left with is F = mdv

dt +0:
and now we’re ready to make the move to F = ma in these situations. If,
however, we acknowledge the fact that the mass of an object is not independent
of time, we still have the whole, correct expression to work with. Kind of makes
you warm inside, doesn’t it?
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Terminal Velocity

Living our everyday lives on planet Earth, one of the things that we need to
come to terms with quite quickly is the force of gravity. There’s no escaping it,
and at the surface it’s always pulling down on us with around 9.8N kg−1. This
means for every kilogram of mass that you hold in your hand on the surface of
the Earth, gravity will be pulling down with 9.8 Newtons of force. Let go of an
object and, unsurprisingly, it falls. If we look at our equation F = mdv

dt + v dm
dt

we can see what happens. We know that every kilogram of mass is going to
have a force of 9.8 Newtons acting on it, so the left hand side of the equation is
simply going to be 9.8m. If we assume that when we drop an object it doesn’t
lose any mass, we get the expression 9.8m = mdv

dt .
If you’ve seen this before you won’t be overwhelmed, but look at what

happens: the ms cancel. We’re left with 9.8 = dv
dt : any object that is dropped,

regardless of mass, will initially accelerate at 9.8 ms−2.
In the previous section, where we were dealing with particles, we ignored

the resistance to motion that drag forces pose. Now we’re going to take a look
at these drag forces, and see what happens. You see, from what we just saw, if
there were no drag forces acting on a dropped falling object, it would simply
keep accelerating. Assuming it was dropped from rest, after 1 second it would
be travelling at a velocity of 9.8 ms−1; after 2 seconds it would be travelling at
a velocity of 19.6 ms−1; after 100 seconds it would be travelling at a velocity
of 980 ms−1; and so on. Sadly, drag forces mean that things aren’t as easy as
that.

For a body moving through the air at high velocities, a good approximation
of the drag forces acting upon it is the expression:

Fd = Dv2

Here, Fd is the drag force, D is the drag coefficient (a constant related to
physical factors such as the shape of the object and the material from which
it is made) and v is the velocity of the object in question. Also, we saw above
that the force of gravity acting on a body is always equal to mg, where m is
the mass of the object and g = 9.8 ms−2. Now, going back to our expression
of Newton’s second law, we can add in these extra factors. Drag always acts
in the opposite direction to an object’s motion, so in our calculations we have
to subtract the effects it has from the motion that would occur if drag didn’t
exist. This gives us the expression:

mg − Fd = m
dv

dt
+ v

dm

dt
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Now, we’re going to again make the assumption that when we simply drop
an object, it doesn’t lose mass. This means that dm

dt = 0. Also making the
substitution Fd = Dv2, we have the expression:

mg − Dv2 = m
dv

dt
Dividing through by an m, we get:

dv

dt
= g − Dv2

m
This equation is very interesting to us, because of the fascinating way that the
left- and the right-hand sides interact. If we release a body from rest, then it
will initially accelerate at around g ms−2, but the faster it falls, the stronger
the drag (because of the v2 in the drag term), and so the slower it accelerates.
To really get your head around this, you need to make sure that you’re totally
happy with the concepts of acceleration and velocity.

Does this mean that there will be a point when the object will stop accel-
erating? Yes, it does. When the object is moving very quickly, the drag force
will be equal in magnitude and opposite in direction to the downward pull of
gravity. Looking at Newton’s first law tells us that when this happens the ob-
ject will continue to fall at a steady speed. It will be moving quickly, but there
will be no more acceleration.

Examining this idea mathematically, we find that dv
dt = 0 when g− Dv2

m = 0,
which means when g = Dv2

m . After a little bit of rearranging, we get the final
expression:

v =
√

mg

D

We call this velocity the terminal velocity of the body. Interestingly, if somehow
an object gets to be moving faster than its terminal velocity (say, for example,
a bullet is fired downwards, so that its initial velocity is higher than its terminal
velocity), the drag forces are stronger than the downward pull of gravity, and so
the acceleration of the object is negative. This means the object keeps slowing
down until it reaches – you’ve guessed it – terminal velocity.

EXERCISES

10.2.1. Given that a particle has a constant mass of 6 kg and accelerates at
5 ms−1, find the force acting on the particle.

10.2.2. A 100 N force is applied to a constant mass of 4 kg. Find the accel-
eration of the mass.
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10.2.3. A rocket has a mass of (100 − 2t) kg, and travels at a constant
velocity of 100 ms−1. Find the force acting on the rocket.

10.2.4. As a meteorite burns up, it travels at a velocity of (200t) ms−1 and
has a mass of (4t2) kg. Find the force at t = 2.

10.2.5. If a falling body has a drag coefficient of 24.5 and a mass of 20 kg,
what is its terminal velocity? Use the value g = 9.8 in your answer.

10.2.6. A skydiver has a mass of 80 kg, and notes that her terminal velocity
is 2 ms−1. What is her drag coefficient?

10.2.7. A rock is measured to fall with a terminal velocity of 10 ms−1 and
has a drag coefficient of 0.5. What is the rock’s mass?

10.3 Resolving Forces

Now that we’ve had a look at some objects in motion, we’re going to take a
look at some objects that are stationary. If we look back to Newton’s first law,
we can see that for an object to be still for more than just an instant all of the
forces on it must have a total sum of 0: otherwise it would be accelerating. In
this section, we’re going to deal with two types of “stationary object” problems:
those involving ropes and those involving slopes.

Ropes

Consider an object hanging on two different ropes from the ceiling in such a
way that the object hangs still on the ropes and both ropes are taut. Why is
such a situation possible? Why is the object not accelerating like mad when
gravity is pulling it downwards and the ropes are both pulling on it too? We
said that if a force acts on something, it will accelerate – so what’s going on?

The answer to this question lies in resolving forces. The examples that
we’re going to look at won’t be quite as complicated as the real world be-
cause we’re going to stick to 2D problems. Don’t worry, though: The concepts
that we’re dealing with in two dimensions are perfectly valid in the real, 3-
dimensional world.

Take a look at Figure 10.1. It is a diagram of a particle suspended from the
ceiling by two ropes.

Here, the forces in the ropes (we often call them “tensions”) are acting in
different directions, and yet the particle is stationary. Why? To solve a problem
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Figure 10.1

like this, we must look at the forces acting on the particle, and resolve them
into their components: horizontal and vertical. If we look only at the horizontal
components of the two forces first of all, we know that they must be equal and
opposite because the particle is not accelerating horizontally. If we then look
only at the vertical components of the forces in action (i.e., the gravitational
pull on the object, and the vertical components of the forces from the ropes), we
know that they must sum to 0 because the particle is not accelerating vertically.
We’ll then get a pair of simultaneous equations that we can solve.

The first part of most “resolving forces” problems involves trigonometry. In
order to express the tensions T1 and T2 from the problem in their horizontal
and vertical components, we need to use sine and cosine. If we’re going to look
at the horizontal direction first, then we get:

T1 cos c = T2 cos d

Now, if we look at the vertical direction, things are a tiny bit more compli-
cated. We can’t simply say that the two tensions are equal and opposite: they
aren’t. Vertically, the sum of the two tensions is exactly equal and opposite to
the downward pull of gravity on the particle. Make sense? Don’t worry about
the mass of the ropes themselves: in these sorts of problems, we make the as-
sumption that the ropes don’t actually have any significant mass of their own.
Anyway, resolving vertically:

mg = T1 sin c + T2 sin d

That’s it. That’s really all there is to it. If we’re given values for some of these
variables we can go about getting numerical answers to these equations, but
otherwise what we’ve done is sufficient: we’ve formed two expressions (one hor-
izontal and one vertical) for the situation in the diagram, and if someone were
to come along and tell us the necessary pieces of information, we could easily
tell them the tensions in the two ropes. Here’s a worked example, doing exactly
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that:

A 6 kg mass is to be suspended from the ceiling by two ropes. At the
place where the particle hangs, rope 1 makes an angle of 60◦ from the horizon-
tal, and rope 2 makes an angle of 30◦ from the horizontal, but on the opposite
side of the object. Find the tensions in each of the ropes.

Reading the question, the set-up of this problem is identical to the diagram
from before, but now we have specified angles and a specified mass. Making a
labelled diagram is always an excellent way to start a problem like this, and
Figure 10.2 is exactly the diagram that we need.

Figure 10.2

Starting with the horizontal first, we get:

T1 cos 60 = T2 cos 30

T1

2
=

√
3T2

2
T1 =

√
3T2

And vertically:

6g = T1 sin 60 + T2 sin 30

=
√

3T1

2
+

T2

2
12g =

√
3T1 + T2

Finally, combining the two equations:

12g = 3T2 + T2

T2 = 3g

T1 = 3
√

3g
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And there we have it. Read it again if you need to: all of the steps should be
clear within a couple of runs through.

Slopes

Now that everything to do with ropes is clear, we can move on to problems
dealing with stationary objects on slopes. We all know that if you place a block
of wood on a steep enough slope, it will slide down it. But what about if we
place that same block of wood on a gentle slope? Is there a chance that it won’t
move at all? Yes, there is – thanks to an old pal called friction. Let’s try an
example: have a look at Figure 10.3.

Figure 10.3

As the diagram shows, this system is a little more complicated than one
dealing only with ropes. The particle is resting on an inclined surface, but
because we make the assumption that the particle is very small, we also make
the assumption that it cannot roll – otherwise, nothing would ever sit on an
inclined plane!

There are three main forces that we need to look at in this type of problem:

• The weight force of the particle, mg.

• The reaction force of the surface on the particle, R.

• The frictional force.

As the diagram shows, the plane is inclined at an angle a from the horizontal.
There are no other external forces in the problem.

Let’s take a moment to think about the forces that are interacting here.
The first (and most important) thing to notice is that the forces we have are
not all parallel or perpendicular to each other, so we’re going to need some
trigonometry to make sense of the situation. Another key thing to note is that
friction, just like drag in the previous section, always acts so as to directly
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oppose motion, and hence it acts directly up the plane. The reaction force
of the plane on the particle (i.e., the force with which the plane pushes the
particle) is perpendicular to the plane. This is a key fact: don’t forget it!

The reaction force is perpendicular to the frictional force, and so we’ll have
to do the least amount of work if we resolve the weight force into its components
parallel and perpendicular to the plane. This way we’ll have all of the forces
that we need expressed at right angles to each other, meaning that we can do
some calculations to find exactly what we want.

So the key problem here is finding how we resolve the weight force, which
acts directly downwards, into its components parallel and perpendicular to the
plane. Luckily, as long as you can recreate Figure 10.4, that problem really isn’t
too difficult:

Figure 10.4

On the left is the original diagram, and on the right is the diagram of how
we resolve that weight force. If you’re confident with geometry, you might like
to find a “similar triangles” argument as to why angle a ends up at the top
in the new diagram, but if you’re not too keen on that sort of thing then it’s
perfectly OK to memorise the diagram. This diagram is the key to solving all
questions about particles on planes, so it’s definitely worth the time investment
of knowing this well enough to be able to draw it without really thinking. It
comes up in every single question involving planes, so you’re going to be using
it over and over again.

Now that we have that sorted, we can start to form some equations. The
forces R and mg cos a act along the same line, but in opposite directions. Be-
cause the particle does not sink into the plane or “jump up” from it, we know
that these two forces must be equal. This gives us the equation:

R = mg cos a

All that’s left to do now is to look at the other pair of forces present in the
system. Because our particle is not sliding up or down the plane, we know that
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the frictional force (we’ll call it Fr) is equal to the component of the weight
force that acts parallel to the plane. This yields the equation:

Fr = mg sin a

And that’s it. We have two equations into which we could substitute values in
order to solve problems. Here’s a worked example:

A particle of mass 10 kg is sitting on a plane inclined at 30◦ to the horizon-
tal. It is not sliding down the plane. Find the magnitude of the frictional force
acting on the particle.

Just like the problems involving ropes, our best chance at succeeding will come
from a carefully drawn diagram, so take a look at Figure 10.5 now!

Figure 10.5

Now, we could formulate an equation in R, but that’s not actually going
to help with this problem, so we’ll go straight for the equation for friction. We
just saw that the equation to do with friction is simply Fr = mg sin a, and so
substituting the values into this equation will yield:

Fr = 10g sin 30

= 5g

That really is all there is to it.

EXERCISES

10.3.1. A mass is sitting stationary on a smooth plane and is attached to
two ropes. Each rope is horizontal, and the horizontal angle between
the two ropes is 180◦. The tension in one of the ropes is T . What is
the tension in the other?
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10.3.2. A 10 kg mass is suspended from the ceiling by two ropes. The rope
on the left makes an angle of 45◦ with the horizontal and the rope on
the right makes an angle of 45◦ with the horizontal. Find the tension
in each of the ropes.

10.3.3. A 3 kg mass is suspended from the ceiling by two ropes. The rope on
the left makes an angle of 60◦ with the horizontal and the rope on the
right makes an angle of 30◦ with the horizontal. Find the tension in
each of the ropes.

10.3.4. An 8 kg mass is suspended from the ceiling by two ropes. The rope
on the left makes an angle of 45◦ with the horizontal and the rope on
the right makes an angle of 30◦ with the horizontal. Find the tension
in each of the ropes.

10.3.5. A particle of mass 10 kg is held by two ropes. The rope on the left
is horizontal and the rope on the right makes an angle of 45◦ with
the horizontal. If the tension in the horizontal rope is T , what is the
tension in the other rope?

10.3.6. A particle of mass x kg sits on a slope which is inclined at y◦ to
the horizontal. Friction stops the particle from sliding. What is the
magnitude of the frictional force?

Where Now?

The kind of problems that we’ve looked at in this chapter all require that we
accept many simplifications of what really goes on in an experiment. The third
section in particular has a lot of simplifications: the idea that there is no chance
that the particle would topple or roll down the slope and the disregard for any
drag forces other than friction are just two of many. As we develop more and
more complicated models of what’s really going on in the experiments, we need
more and more complicated mathematics to be able to solve the problems.

What this chapter covers really is the tip of the iceberg. Classical mechanics
like this could fill an entire book and still not deal with everything. Chapter
18 will give you the opportunity to look at a few more types of problem, but if
you enjoy mechanics then your best bet is to go out and find some textbooks
on it – you’ll definitely have a good head-start on your degree if you’re well
prepared in this area. University Physics, 11th Ed. (H. Young and R. Freedman,
Pearson, 2004) is a book we’d heartily recommend: it has detailed explanations
and great examples to try out.
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Think back to the derivation of the expression:

x1 = x0 + v0(t1 − t0) +
∫ t1

t0

(∫ tn

t0

a dt

)
dtn

We promised that we’d show you how this expression “becomes” s = ut+ 1
2at2

if we’re working with constant acceleration (which will probably be familiar to
you if you’ve already studied some mechanics). Here it is:

• Choose our initial frame of reference so that t0 = 0 and x0 = 0:

x1 = v0 · t1 +
∫ t1

0

(∫ tn

0

a dt

)
dtn

• We said that we’re working with constant acceleration, so in this special case
a is not a function of t. Integrating once yields:

x1 = v0t1 +
∫ t1

0

atn dtn

• Integrating again:

x1 = v0t1 +
1
2
at1

2

• In the “language” of the SUVAT equations, x1 is the displacement, s; v0 is
the initial velocity, u; and t1 is the finishing time, t:

s = ut +
1
2
at2
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Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. What does the symbol /∈ mean?

2. If A = {6x : x ∈ N} and B = {8x : x ∈ Z}, is −24 ∈ A ∪ B?

3. If C = {5x : x ∈ N} and D = {15x : x ∈ N}, is 20 ∈ C ∩ D?

4. If E = {10x : x ∈ N} and F = {5x : x ∈ N}, what are the three smallest
strictly positive members of F \ E?

5. Write out the truth table for ¬p.

6. Write out the truth table for p ∨ q.

7. Use a truth table to determine if ¬(p ∨ q) is logically equivalent to (¬p) ∧
(¬q).

8. Use a truth table to determine if (p ∨ q) ∧ r is logically equivalent to (p ∧
r) ∧ (q ∧ r).
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9. Is f(x) = sin x, f : R → R, injective, surjective, bijective or none of these?

10. Is f(x) = x3+7, f : R → R, injective, surjective, bijective or none of these?

11.1 Set Notation

Just like all areas of mathematics, working with sets requires that we have a
solid, unambiguous language in which to communicate. Lots of academic books
use set notation when they display logical arguments and proofs, and they
are very helpful as a concise way to write answers to problems; we call these
“solution sets.” Despite their everyday use in the mathematical world, even the
most basic usage of the notation surrounding sets is absent from most people’s
pre-degree education. For this reason, we’re going to start at the beginning. . .

Dictionary Dialect

First and foremost, what is a set? Put simply, a set is an unordered collection
of objects. It is important to remember that sets are unordered; an ordered
version of a set is a vector. Not too bad, eh?

Unfortunately, the only way to learn most of the symbols and notation sur-
rounding sets is to read them. Although we will discuss each one in a moment,
here’s the dreaded list to learn:

Symbol Meaning
x ∈ A x is an element of the set A

y /∈ B y is not an element of the set B

M ⊂ N M is a proper subset of N

P ⊃ Q Q is a proper subset of P

M ⊆ N M is a subset of N

P ⊇ Q Q is a subset of P

A ∩ B A and B

A ∪ B A or B (or both)
AC “Not A”
A \ B The complement of A in B

∅ The empty set
{} “The set”{
x2 : x ∈ Z

}
The set of squared xs, such that x is an integer{

x2|x ∈ Z
}

The set of squared xs, such that x is an integer

You might have already noticed a convention that we use: we give a set a capital
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letter and we give elements of a set a lowercase letter. Beyond that, each of the
symbols obviously needs a little explanation before we can hope to use them
accurately. Starting at the top, ∈ and /∈ shouldn’t be too much trouble, so let’s
go to an example straight away. If we say that A is the set of even numbers,
then 2 ∈ A and 3 /∈ A. If we say that B is the set of roots of the polynomial
x2 + 4x + 3, then −3 ∈ B and 7.63 /∈ B. Hopefully that’s ample explanation.

Subsets are a bit more complicated. Even at degree level, the difference
between the symbols ⊂ and ⊆ is often ignored, but there’s no reason not to
learn them properly first time around. The idea of a subset is simply this:

A subset is a set that contains some of, or all of, another set.

So the set of multiples of 4 is a subset of the set of even numbers. And the set
of roots of the polynomial x2 −x− 6 is a subset of all the integers greater than
−10. Hopefully that’s not too baffling.

A proper subset is simply a subset that does not contain all of the original
set. Both the examples just given for “subset” are actually proper subsets. But
consider this: If A is the set of all strictly positive even numbers and B is the
set of multiples of 2 that are greater than 0, then A is a subset of B, but it is
not a proper subset of B, because all of B is contained in A. A good trick to
test whether you have a proper subset or not is this: If A is a subset of B and
B is a subset of A (note this happens in our “even numbers” example), then A

is not a proper subset of B, and B is not a proper subset of A. Otherwise, A

is a proper subset of B.
To remember which way around the subset symbol goes, it might be helpful

to think of ⊂ as “contained in,” so A ⊂ B can be thought of “Set A is contained
in Set B.” As for which of ⊂ and ⊆ is for proper subsets, it’s good to think
of the analogy with the inequality symbols < and ≤. While < is “strictly less
than,” ≤ is “less than or equal to.” Likewise, ⊂ is a “strict” (i.e., proper) subset,
and ⊆ is “a subset, or equal to.”

Although we use them in everyday life, the words “and,” “or” and “not”
have much more rigid definitions in mathematics. Let’s tackle them one at a
time:

• And — The word “and” is defined exactly how we use it in conversation.
It demands that both things associated with it are true: for example, if you
ask for fish and chips, you are saying “I would like fish” and “I would like
chips.” When talking about “and” in the context of sets, we use the symbol
∩, and we call it the “intersection’,’ so A∩B can be read as “A intersection
B.”

• Or — “Or” is the word that we have to be most careful with. The problem
is, in everyday life we actually use the word quite sloppily. It is often hard to
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tell whether when someone says “or” they mean “either/or” or “and/or.” For
example, if I asked someone for “chips or potato wedges,” I’d be perfectly
happy if they brought me a plate of chips, a plate of potato wedges or a plate
with half potato wedges and half chips. Yet if I said to someone that I would
like “coffee or lemonade” I would be less than happy if they brought me a
cup that contained a mixture of the two. The same “or” was used in both
situations, yet one of the situations produces an unsatisfactory outcome — in
the first situation, what I meant was “and/or,” and in the second situation I
meant “either/or.” To avoid this difficulty in mathematics, it is necessary to
have better clarity. For this reason, many years ago it was decreed that “or”
in mathematics would be inclusive or : that is, “and/or.” So if you are looking
at the probability of A or B happening, you are looking at the probability
of A happening, the probability of B happening and the probability of them
both happening. If we don’t want this “both” part on the end, then we have
to specifically write “either/or” in our original statement: in this case, we
would have written, “The probability of either A or B happening, but not
both.” The symbol for “or” is the symbol ∪ – often read as “union” in set
theory.

• Not — Thankfully, “not” is an easy one. It simply negates the statement
that it is attached to. In this book we denote “not” by writing a superscript
C next to the event that we want to negate, so for the set “Not A” we would
write AC . There are some other ways to write “not,” and different authors
have different preferences: two common examples are to put a “bar” above
the set (i.e., Ā, pronounced “A bar”) or to put an apostrophe after the set
(i.e., A′, pronounced “A prime”). (Too bad)C , eh?

One last symbol before we try to take on whole expressions is \. This is
very similar to the “minus” sign – for example, A \B means “all of set A that
is not in set B.” An example should illustrate this: If A is the set of multiples
of three and B is the set of multiples of five, then A \ B is simply the set
containing the numbers 3, 6, 9, 12, 18, 21, 24, 27, 33 . . .” and so on. If M is the
set of even numbers and N is the set of multiples of four, then M \ N is just
the set {2, 6, 10, 14 . . .} Note that A \ B is not the same as B \ A: in the two
examples above, we see that B \ A is {5, 10, 20, 25, 35, 40, 50 . . .} and N \ M is
actually “the empty set” – the set with no elements in it at all. We give this
set the symbol ∅.
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The Full Notation

Lastly, we come to full expressions in set notation – things like
{
x2 : x ∈ Z

}
.

The key thing to remember is that anything in the curly brackets is in the set,
the expression “on the left” is the property of the set, and the expression “on
the right” is a restriction on the set. The thing that divides “the left” from “the
right” is either a colon or a vertial line (: or |), depending on author preference:
just like the table at the start of the chapter says, they mean exactly the same
thing. When deducing what is meant by a set, reading : or | as “such that”
makes good, logical sense of what is presented.

Therefore, something like A = {3x + 1|x ∈ N} is simply read as, “The set of
‘(3x+1)’s, such that x is a natural number (recall from the chapter on complex
numbers that the natural numbers are the numbers 1, 2, 3, . . .). Some elements
of this set are 4, 7, 10, 13, 16 . . ..

One last example before the first set (no pun intended!) of exercises.

Find three elements of the set G = {5x : x ∈ Z, x �= 0}.
There are infinitely many members of this set, so simply choosing −30, 10 and
550 is perfectly good enough. One thing to note is that this time we have two
restrictions on the set – the result is that 0 /∈ G, whereas it would be if we
didn’t have that second restriction.

EXERCISES

11.1.1. What does the symbol ∈ mean?

11.1.2. What does the symbol \ mean?

11.1.3. Describe in words what {4x|x ∈ Z} means.

11.1.4. If A = {3x : x ∈ N} and B = {5x : x ∈ Z}, is 10 ∈ A ∪ B?

11.1.5. If C = {3x|x ∈ N} and D = {10x|x ∈ Z}, is 20 ∈ C ∩ D?

11.1.6. If E = {6x : x ∈ N} and F = {3x : x ∈ N}, how many elements of
E \ F are there that are less than 20?

11.1.7. If G = {2x + 1|x ∈ N} and H = {3x|x ∈ N}, what is the smallest
strictly positive member of G \ H?

11.1.8. If J = {4x : x ∈ N} and K = {7x : x ∈ Z}, what is the smallest
strictly positive member of J ∩ K?
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11.2 Logical Equivalence

After our exploration of the symbols used in sets, it’s time to start looking
at some of the symbols used in logical expressions: You’ll notice a remarkable
similarity between these symbols and the symbols we’ve just looked at.

Consider a proposition p, which could either be true or false. We aren’t
saying anything specific about p, just that it’s either true or it isn’t. Then
consider another proposition q, which is also (independently of p) either true
or false. Recalling the definition of “and” given for sets in the last section, what
combination of true and false would we require in order for “p and q” to be
true? Hopefully you’ll spot a link with the idea of “intersection”: we’d need p

to be true and q to be true. When working with logic, we write “and” as ∧,
which you’ll see is strikingly similar to the symbol for intersection!

How about if we wanted “p or q” to be true? Again recalling the definition
from the last section, this happens when p is true and q is false, when p is
false and q is true, and when both p and q are true. The symbol for “or” looks
(unsurprisingly!) similar to the symbol for “union”: we write ∨ to mean “or.”

As you’ve probabliy guessed, “not” has a logical symbol too. This one’s a
little different to the previous two, but it’s still easy to remember. If we wanted
to consider “not p” (which is the “negated” verion of p: that is, if p is true then
“not p” is false and vice versa) we’d write ¬p.

The Truth

With the logical symbols in place, it’s time to practise using them. At the start
of this section we introduced the idea of arbitrary propositions p and q, and
now we’re going to look at putting individual propositions together to make
new propositions. ∧, ∨ and ¬ are examples of logical connectives: they can
be used to combine component propositions to make a new proposition. This
really isn’t as confusing as it sounds: if p and q are both propositions then so
too is p ∧ q: that is, individually p and q can either be true or false, and the
proposition p ∧ q can either be true or false. p ∧ q is “true” when both p and
q are true, and false otherwise. Remember that ∧ means “and”: go back and
review the definition from the previous section if you need to.

Spotting whether a proposition like p ∧ q is true or false isn’t too difficult
but as we deal with more difficult logical statements we need a more methodical
approach. For this, we use a tool called Truth Tables.

A truth table is a table that looks at all of the possible “true or false”
combinations between component propositions to see if a new proposition made
out of these component propositions and logical connectives is true or false.
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That definition is horribly theoretical, so here’s an example:

Is the proposition p ∧ q the same as the proposition p ∨ q?

We know by definition that these are not the same, and so let’s see that result
using truth tables. Here is the truth table for p ∧ q:

p ∧ q

T T T
T F F
F F T
F F F
0 1 0

This probably looks like gibberish, so here’s an explanation of what everything
means. The logical statement that we’re testing is along the top, divided up
into its parts – nothing too astonishing there. The bottom line of the table is
the order that we work through the table. In step 0, we write all of the possible
“true or false” combinations of the propositions that we’re considering. So for
two propositions, we have:

• Both true

• p true and q false

• p false and q true

• Both false

These are the Ts and Fs in the columns of step 0. Then we move to the step 1
column, and fill in the gaps. The logical connective that we’re looking at is ∧,
and so we ask the question, “Is p∧ p true?” Well, if both p and q are true then
p ∧ q, or “p and q”, is true. But if either one of p or q is false (or if they both
are) then p ∧ q is false. Now let’s look at p ∨ q:

p ∨ q

T T T
T T F
F T T
F F F
0 1 0

Hopefully nothing there was a surprise to you: remember that ∨ means “or,”
and so p ∨ q will be true if either (or both) of p or q are true, but not if they
are both false.

The question asked us to determine from these truth tables whether p ∧ q

and p∨ q are the same thing. Well, two logical expressions are only the same if
they are equivalent, and “equivalent” has a truth table too:
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p ⇔ q

T T T
T F F
F F T
F T F
0 1 0

That is, two statements are equivalent if they “agree” where propositions are
true and false. If you’d prefer to see that in action via an example, let’s revisit
the initial question by drawing one big truth table with stages 0, 1 and 2:

p ∧ q ⇔ p ∨ q

T T T T T T T
T F F F T T F
F F T F F T T
F F F T F F F
0 1 0 2 0 1 0

You’re probably wondering how we filled in this jumbo truth table. Well, we
started by looking at the “stage 1” columns, and filling these with either “T”
or “F” depending on whether the result of the test was true or false. These
were precisely the results that we saw in the individual truth tables for ∨ and
∧ above. After we’ve done that, we move on to the “stage 2” column, and fill
it with either “T” or “F”, drawing our inputs for this test from the results
in the “stage 1” columns. From this table, because we can see that the final
(in this case, “stage 2”) column is not filled entirely with trues, then the two
expressions p ∧ q and p ∨ q are not the same.

Let’s take a look at another example, and fill a truth table step-by-step:

Is p ∧ (¬(q ∨ r)) logically equivalent to the statement (p ∧ (¬q)) ∧ (p ∧
(¬r))?

The only difference here is that we’re going to need more entries in step 0 to
account for the fact that we have p, q and r to deal with. This means that there
are eight possible “true” and “false” combinations to begin with.

Firstly, we need to work out the truth table for ¬, but that shouldn’t be
too hard:

¬ p

F T
T F
0 1
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See, nice and easy; if it’s true, it becomes false. If it’s false, it becomes true.
OK, so here’s the big truth table to answer the original question, shown step-
by-step as it is filled in. Notice how the brackets tell us which operations are
performed at each stage:

Step 0:
p ∧ (¬ (q ∨ r)) ⇔ (p ∧ (¬ q)) ∧ (p ∧ (¬ r))
T T T T T T T
T T F T T T F
T F T T F T T
T F F T F T F
F T T F T F T
F T F F T F F
F F T F F F T
F F F F F F F
0 0 0 0 0 0 0

Step 1:
p ∧ (¬ (q ∨ r)) ⇔ (p ∧ (¬ q)) ∧ (p ∧ (¬ r))
T T T T T F T T F T
T T T F T F T T T F
T F T T T T F T F T
T F F F T T F T T F
F T T T F F T F F T
F T T F F F T F T F
F F T T F T F F F T
F F F F F T F F T F
0 0 1 0 0 1 0 0 1 0

Step 2:
p ∧ (¬ (q ∨ r)) ⇔ (p ∧ (¬ q)) ∧ (p ∧ (¬ r))
T F T T T T F F T T F F T
T F T T F T F F T T T T F
T F F T T T T T F T F F T
T T F F F T T T F T T T F
F F T T T F F F T F F F T
F F T T F F F F T F F T F
F F F T T F F T F F F F T
F T F F F F F T F F F T F
0 2 0 1 0 0 2 1 0 0 2 1 0

Step 3:
p ∧ (¬ (q ∨ r)) ⇔ (p ∧ (¬ q)) ∧ (p ∧ (¬ r))
T F F T T T T F F T F T F F T
T F F T T F T F F T F T T T F
T F F F T T T T T F F T F F T
T T T F F F T T T F T T T T F
F F F T T T F F F T F F F F T
F F F T T F F F F T F F F T F
F F F F T T F F T F F F F F T
F F T F F F F F T F F F F T F
0 3 2 0 1 0 0 2 1 0 3 0 2 1 0
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Step 4:
p ∧ (¬ (q ∨ r)) ⇔ (p ∧ (¬ q)) ∧ (p ∧ (¬ r))
T F F T T T T T F F T F T F F T
T F F T T F T T F F T F T T T F
T F F F T T T T T T F F T F F T
T T T F F F T T T T F T T T T F
F F F T T T T F F F T F F F F T
F F F T T F T F F F T F F F T F
F F F F T T T F F T F F F F F T
F F T F F F T F F T F F F F T F
0 3 2 0 1 0 4 0 2 1 0 3 0 2 1 0

There we have it: at the end of step 4, we see that we get a whole column of
trues. Even though the statements do look rather different, they are in fact
logically equivalent.

EXERCISES

11.2.1. Write out the truth table for p ⇔ q.

11.2.2. Write out the truth table for p ∧ q.

11.2.3. Use a truth table to determine if p ∧ (¬q) is logically equivalent to
¬(p ∧ q).

11.2.4. Use a truth table to determine if p∨ (q ∧ r) is logically equivalent to
(p ∨ q) ∧ (p ∨ r).

11.2.5. Use a truth table to determine if ¬(p ∨ q) is logically equivalent to
(¬p) ∨ (¬q).

11.2.6. Use a truth table to determine if ¬(p ∧ q) is logically equivalent to
(¬p) ∨ (¬q).

11.3 Functions

There is also a fair amount of logical discovery to be made with functions.
Sadly, most of it is quite complicated so what we’re going to do here is to look
at some definitions. That way, when the time comes to study functions properly
you’ll have this stuff firmly under your belt.

Needles and Knighthoods

Firstly, let’s answer the basic question: what is a function? We often draw
graphs of functions, but what is a function to begin with? Well, quite simply,
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a function is something that relates every input to exactly one output. This
means if we put a number into a function, then we’ll never get two or more
outputs, and so our familiar friends like x2, sinx and the like are all indeed
functions. But the line shown in Figure 11.1 is not, because at the value marked
with the dotted line there are two output values defined for the given input.

Figure 11.1

Keeping this visual approach in mind should help you determine whether
things are functions or not quickly and easily: if you can find any value of x

that has more than one value of f(x), then you don’t have a function.
When we define a function, we need to describe two things about it: what

it does to things that we put through it, and also where it maps from and to.
Most functions you’ll have met so far map from the real numbers to the real
numbers – that is, we can put any real number in and we will get a real number
out. But not all functions work this way: imagine the function f(x) =

√
x,

where we take the positive square root (so, for example, we say f(9) = 3 and
not f(9) = ±3). We definitely can’t have this function going from the reals to
the reals, because what would we do when we try to apply this function to a
negative number? Here, we have two options: we can either restrict the domain
(i.e., the set of numbers that go in to the function), or we can expand the range
(i.e., the set of numbers that come out of the function). This means either of
the functions f(x) =

√
x, f : R≥0 → R or f(x) =

√
x, f : R → C are both safe
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to use (where R≥0 is the notation for “the non-negative real numbers” and C

is the set of complex numbers).
It’s essential that you keep the order of the letters in the definition of

“function” in mind. It’s convenient to use y = f(x), as you probably already
have done for many years.

If we have only one value of y for each value of x, we have a function. But
if we know that we have a function and we also know that we have only one
value of x for each value of y, then our function is injective. Look carefully at
the way the letters go around in that definition: for a function to be injective,
we reverse the roles of x and y in the definition of “function.” So the function
y = f(x) = x is injective, because each value of y only has one value of x, but
the function y = f(x) = x2 is not injective, because at, say, y = 4, we have
both x = 2 and x = −2 mapping there. A less formal name for injectivity is
“one-to-one”: This comes from the idea that for a function to be injective, a
point in the range that is mapped to will be mapped to only once.

As well as injectivity, there is another property that functions can have:
surjectivity. A function is surjective if it maps to all possible values of the
range. This means we can choose any value of y in our given range and find
at least one value of x (in our domain) that is mapped to it. For example,
the function f(x) = x, f : R → R is surjective because every value of y will
have a value of x mapped to it, but the function f(x) = x2, f : R → R is
not surjective because negative values of y will never be mapped to. A less
formal name for surjectivity is “onto”: this comes from the idea that wherever
you choose in the range, you will be “mapped onto.” We can also write the
definition of surjectivity in formal language:

If f : A → B, and for every b ∈ B there exists some a ∈ A such that
f(a) = b, then f is surjective.

The one final property of functions that we’re going to look at is somewhat
easier. Here it is:

If a function is both injective and surjective, then it is bijective.

Thankfully, that’s a lot easier to remember than the other two! Being equipped
with a good knowledge of these three properties that functions may or may
not have is excellent preparation for your degree. These properties come up
all over the place in proofs, and so getting a firm grasp of them now is most
definitely going to be beneficial. Learning them thoroughly is going to take a
while, but be persistent! It might also help if you think about some functions
that you already know (e.g. x4 or cos x), and work out which of the properties
they have.
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EXERCISES

11.3.1. Write, in words, the definition of “surjective.”

11.3.2. Write, in words, the definition of “injective.”

11.3.3. If f : A → B, and for every b ∈ B there exists a ∈ A such that
f(a) = b, and a = b ⇒ f(a) = f(b), is f bijective?

11.3.4. Is the function f(x) = 3x, f : N → Z surjective?

11.3.5. Is the function f(x) = x
2 , f : Z → Q injective?

11.3.6. Is the function f(x) = 5x, f : N → Z bijective?

11.3.7. What is the problem with the function f(x) = x
2 , f : Z → Z?

11.3.8. How many of sinx, cos x and tanx are surjective, if f : R → R?

Where Now?

Learning to use the language of sets and functions is obviously only a starting
block from which we can access the “real” mathematics. This language is the
everyday language of all mathematicians’ work in logic, and so being fluent in
understanding it is absolutely crucial.

If you’d like to know a little about using what we’ve learned here, Algebra
and Geometry (A. Beardon, Cambridge University Press, 2005) has a good
exploration of permutations on sets (which makes good use of concepts such as
bijectivity).

In analysis, lots of “disproof by contradiction” arguments work around in-
jectivity or surjectivity. We often start a proof by assuming a function to be
either one or the other, doing some fancy tricks, and concluding that it isn’t
what we said it was – hence disproving the initial statement. In fact, this sort
of proof is central to many areas of degree mathematics.
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Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. Formally state the well-ordering principle.

2. What is the least element of the set of positive odd numbers?

3. What is the least element of the set
{
x2 − 8x + 30|x = 1, 2, 3, . . .

}
?

4. What is the least element of the set
{
x2 − 9x + 42|x = 1, 2, 3, . . .

}
?

5. What two things must we show in order to prove a rule by induction?

6. Use proof by induction to show 3 + 6 + 9 + · · · + 3n = 3n2+3n
2 .

7. “Guess” and then prove by induction a forumula for:

3 + 2 + 1 + 0 + (−1) + · · · + (4 − n).

8. Write the following statement using an “implies” arrow:
“I always get hot when I drink coffee.”
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9. Write the contrapositive to the following statement:
Diving is permitted here ⇒ The water is deep here.

10. Write the following statement using an “implies” arrow, and then write its
contrapositive:
“If x is greater than 7, I know for certain that x is greater than or equal
to 7.”

12.1 Proof by Induction

Logic lies at the heart of mathematics. One such example of a logical argument,
proof by induction, is one of the most widely used tools at the beginning of
any numerate degree course. Although to some people induction is a relatively
familiar concept, to many it is entirely new. Before we can confidently use in-
duction, however, it is necessary to first formalise “the well-ordering principle.”

The Well-Ordering Principle

The natural numbers, N (i.e., the positive, whole numbers such as 7, 12, 216, . . .),
have a somewhat obvious yet very important property. If we take any collection
of them and then look at the numbers we’ve taken, we will always be able to
identify the smallest number.

In the language of logic, which sometimes demands mind-boggling precision,
we can write this statement more formally.

• The collection of all the natural numbers is called a set, and so by choosing
“some” of them for our collection, we have a subset of N.

• We know that our collection must have at least one number in it, so we say
formally that it is “nonempty.”

• Any “member” of a set is called an element.

We can tie these facts together to get the formal definition of the well-ordering
principle:

“Every nonempty subset of N has a least element”.

Please don’t be scared away by how formal this statement looks: mathemati-
cians love writing things like this because there can be no uncertainty as to
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what is being said – plus there is the added bonus of confusing all those with
nonmathematical backgrounds!

EXERCISES

12.1.1. Identify the smallest element of this subset of N:

{1, 3, 7, 8, 9, 11, 13, 15}

12.1.2. Identify the smallest element of this subset of N:

{2n|n = 1, 2, 3, . . .}

12.1.3. Identify the smallest element of this subset of N:{
n2 − 4n + 6|n = 1, 2, 3, . . .

}
12.1.4. Does every nonempty subset of N have a greatest element? Give a

reason for your answer.

12.1.5. Does every nonempty subset of integers (i.e., Z: the positive and
negative whole numbers, and 0) have a least element? Give a reason
for your answer.

12.2 The Principle of Induction

Now that we have the well-ordering principle under our belts, we’ll go for an
informal exploration of proof by induction. At the very end of the chapter
(“Where Now?”), we’ll see how the well-ordering principle is used in the formal
statement of this proof.

Imagine we have studied a small amount of data and come up with a “rule”
about the data which we think might always be true. An example could be:

1 = 1

1 + 2 = 3

1 + 2 + 3 = 6

1 + 2 + 3 + 4 = 10
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and “guessing” the rule, “The sum of the first n natural numbers is n
2 (n + 1).”

We could keep trying our “guessed” rule on larger and larger values of n, but
how could we be absolutely certain that it would always work, no matter how
large an n we chose? This is where induction comes in.

To start an induction, we always have to show manually that our rule works
for the first case. In the example above, the first case is when we have n = 1,
and we know that the sum of the first 1 natural numbers is 1. Try this in our
“guessed rule”:

1
2 (1 + 1) = 1

Our rule works for n = 1.
Now here’s the clever bit. Imagine that we could prove this statement:

“In our rule, if it’s true for n then it’s true for (n + 1).”

Take a moment to consider the power of this. If we could prove it, we could
say that if it’s true when n = 2 then it’s definitely true when n = 3. If it’s true
when n = 17893 then it’s definitely true when n = 17894.

This is a very good thing, as it reduces the number of times we have to
test our rule in order to be sure that it’s valid for lots of different values of n.
Imagine that we wanted to be sure that the rule we “guessed” earlier was true
for n = 1, 2, 3, 4, 5 and 6. Before, we would have had to have tested all six cases
separately, but if we knew that

“In our rule, if it’s true for n, then it’s true for (n + 1),”

then testing just n = 1, 3 and 5 would automatically ensure that it was valid
for n = 2, 4 and 6.

The Lazy Man’s Best Friend

Before we go on to what an artist might call the “magic” of induction, you need
to understand the previous bit. Seriously. There is little chance that you’ll
be stunned by the power of induction if you don’t fully follow what’s just
happened, because things are going to go a little crazy round here.

We just showed that if we can prove:

“In our rule, if it’s true for n, then it’s true for (n + 1),”

then we can greatly reduce our work in showing that our rule holds true for a
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certain range of n. By testing just n = 1, 3 and 5, we get n = 2, 4 and 6 checked
“for free.” Which is nice. But can we not reduce our work even further?

In checking that the rule works for n = 1, we can also be sure that it works
for n = 2. Now stop. Think for a moment. Do we really need to manually check
if the rule works for n = 3? No.

When we manually check n = 1, we are certain that our rule works for
n = 2. Now, if we look at our original statement:

“In our rule, if it’s true for n then it’s true for (n + 1),”

We see that once we’re sure our rule is true for n = 2 then it’s definitely
true for n = 3. Then, if it’s true for n = 3 it’s definitely true for n = 4, and so
on. See the “magic” at work: we only have to test n = 1, and then we get all
the greater values of n for free. Remember that right at the start of the section
we showed:

1
2 (1 + 1) = 1

This was our manual check that the rule held for n = 1. So if we were somehow
able to formally prove:

“In our rule, if it’s true for n then it’s true for (n + 1),”

then we would know that our rule is always true. This means by testing n = 1,
we know it works for n = 2, 3, 4, . . . , 100, . . . , 1000000, . . . and so on. Now that
is a time saver.

Proving the “Magic” Rule

Sadly, with induction, there’s no hard-and-fast way of proving our crucial tool:

“In our rule, if it’s true for n then it’s true for (n + 1).”

(That’s the last time you have to read it, we promise.) Luckily, though, there
is a general strategy that you can follow and adapt. Let’s work through our
example.

We propose that the sum of the first n natural number is equal to n
2 (n+1).

We can also write that like this:

1 + 2 + 3 + · · · + n = n
2 (n + 1)

If we add on the next (i.e., (n + 1)th) term to both sides of this, we get:
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1 + 2 + 3 + · · · + n + (n + 1) =
n

2
(n + 1) + (n + 1) (12.1)

(all we have done is added (n + 1) to both sides).
Is there some way of rearranging the right-hand side to prove our crucial

tool? Let’s have a think:
If we say that the sum of the first n natural numbers is n

2 (n+1), then what
would the sum of the first n+1 natural numbers be? It would be n+1

2 ((n+1)+1),
which is n+1

2 (n+2). We got this be rewriting my “guessed” rule, but replacing
all the ns with (n + 1)s.

Now take a look at the right-hand side of equation (12.1):

n
2 (n + 1) + (n + 1)

Manipulate it like this:

n

2
(n + 1) + (n + 1) =

n2 + n

2
+ n + 1

=
n2 + n + 2n + 2

2

=
n2 + 3n + 2

2

=
n + 1

2
(n + 2).

We did it. We showed, with our rule, that if it’s true for n then it’s true for
n + 1, because we can rewrite the rule in n + 1 and the rule still holds true. As
we have already manually tested n = 1, we know that our rule works for all n.

Here’s a recap and another worked example before you’re launched into
some exercises:

• There are two “parts” to induction: Part 1 is manually showing that your
rule works for the first value of n. Part 2 is showing

“In our rule, if it’s true for n then it’s true for (n + 1).”

(OK, so maybe the previous time wasn’t the last!)

• The general strategy in Part 2 is adding the next term to both sides, then
rearranging the right-hand side to prove that your rule works when expressed
in (n + 1) instead of n.

Here’s one more worked example:

Prove that the sum of the first n square numbers is n
6 (n + 1)(2n + 1).
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Test n = 1:

1
6 (1 + 1)(2 + 1) = 6

6 = 1, which is indeed 12.

Our guessed rule can be written:

12 + 22 + · · · + n2 = n
6 (n + 1)(2n + 1)

Add on the next term:

12 + 22 + · · · + n2 + (n + 1)2 = n
6 (n + 1)(2n + 1) + (n + 1)2

Rearrange the right-hand side:

n

6
(n + 1)(2n + 1) + (n + 1)2 = (n + 1)

(n

6
(2n + 1) + n + 1

)
= (n + 1)

(
2n2 + n

6
+ n + 1

)
= (n + 1)

(
2n2 + 7n + 6

6

)
=

(n + 1)(2n + 3)(n + 2)
6

=
n + 1

6
(n + 2)(2n + 3)

=
n + 1

6
((n + 1) + 1)(2(n + 1) + 1).

Done!

EXERCISES

12.2.1. I look at this:

1 = 1

1 + 1 = 2

1 + 1 + 1 = 3

and I guess the rule 1 + 1 + 1 + . . .︸ ︷︷ ︸
n times

= n. Prove my rule by induction.
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12.2.2. I look at this:

2 = 2

2 + 4 = 6

2 + 4 + 6 = 12

and I guess the rule 2 + 4 + 6 + · · ·+ 2n = n2 + n. Prove my rule by
induction.

12.2.3. Prove the following statement by induction:

13 + 23 + 33 + · · · + n3 = (1 + 2 + 3 + · · · + n)2

(Remember that 1 + 2 + 3 + · · · + n = n
2 (n + 1)).

12.2.4. “Guess” and then prove by induction a formula for the sum of the
first n odd numbers.

12.2.5. The set m is defined as:

m = {4k|k = 1, 2, 3, . . .}

Find and prove by induction a formula for the sum of the first n

elements of m.

12.3 Contrapositive Statements

Implications

At this step we’re going to need a new symbol. It looks like this: ⇒, and it
means “implies.” Here are some examples of it in action:

• I have exactly two American coins in my pocket ⇒ I have at least 2 cents in
my pocket.

• I wear strong reading glasses ⇒ I do not have good eyesight.

• It is 3 pm ⇒ It is after midday.

The first and most useful thing to note is the direction of the arrows: “implies”
only goes one way. There is a different symbol (⇔) for statements where the
“implies” works both ways.
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Let’s just clarify things. Consider again the statement:

It is 3 pm ⇒ It is after midday.

If we say “it is 3 pm,” we immediately know for certain that it is after mid-
day. But consider the implication the wrong way around: if we say “it is after
midday” this in no way implies that it is 3 pm. It could be 12:01 pm and our
statement that “it is after midday” is still certainly true, but it is most certainly
not 3 pm at this time! This special “feature” of the implies arrow is what gives
us the ability to deduce contrapositive statements.

It’s All Negative

As we’ve just seen, implications do not work backwards. But if we negate the
statements we can do a clever trick. Negating a statment means changing “true”
to “false” in the statement. For example:

Statement Negated Statement
It is 3 pm. It is not 3 pm.

I do not have good eyesight. I have good eyesight.
I have at least 2 cents in my pocket. I have less than 2 cents in my pocket.

(consider that last one carefully — writing it as an inequality is helpful).

We form a contrapositive statement in two steps:

• Negate both sides of the implication.

• Reverse the arrow.

So the contrapositives to our original three statements become:

I have less than 2 cents in my pocket. ⇒ I do not have 2 coins in my pocket.

I have good eyesight. ⇒ I don’t wear strong reading glasses.

It is not after midday. ⇒ It is not 3 pm.

Hopefully this is sufficient exploration for you to tackle some exercises.
Remember: negate both sides and reverse the implication. Easy!
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EXERCISES

12.3.1. Write the contrapositive to the following statements:

• I have a phobia of heights ⇒ I have never been up the Eiffel Tower.

• x is a prime number greater than 2 ⇒ x is odd.

• The sum of the digits of a positive whole number is divisible by 3
⇒ The number itself is divisible by 3.

• x is positive ⇒ x > 0

12.3.2. The definition of a prime number is “a positive integer, exactly di-
visible by only 1 and itself.” How can we tie together two of the
above statements to help us part of the way to determining whether
an integer chosen at random is prime?

Where Now?

There are many other proof methods besides those outlined in this chapter.
Another common method of proving something is proof by contradiction. This
method can prove an implication by showing that if the implication weren’t to
be true, we must arrive at a contradiction. For example, if we were asked to
prove the statement, “All positive integer multiples of 4 are even,” we could
proceed as follows:

1. Assume that there exists n, a positive integer multiple of 4 that isn’t even.

2. Then n = 4z, where z ∈ Z.

3. So n = 2 · (2z), z ∈ Z.

4. So n is an even number, which is a contradiction to the original assumption
that “n is not even.”

5. So there cannot possibly exist such an n.

6. So all positive integer multiple of 4 must be even.

Hopefully you’ll agree that this method of proof is neat and very useful!
The next logical thing is to formalise our rather informal statement of in-

duction. This follows from the well-ordering principle, and the idea of the proof
is to formulate a contradiction. We start by assuming that there are some val-
ues of n that our rule won’t hold for. By the well-ordering principle, of these
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numbers there must be a least element. But we manually checked the first pos-
sible value of n, so we know it’s true for the value of n directly before this least
element, and by our “crucial tool” we know that it can’t be false for the next
value of n, thereby forming a contradiction. There are therefore no finite values
of n that the rule won’t hold for.

Taking the time to become comfortable with induction is most certainly
time well spent. What Is Mathematics? 2nd Ed. (R. Courant, H. Robbins and
I. Stewart, Oxford University Press, 1996) is a great place to look: there’s a
detailed explanation of the process and some excellent examples to practice
with too. If you enjoyed exploring the logic behind induction you might also
like to learn about “strong induction,” which will be another useful tool at
university.

Contrapositive statements are very, very helpful in analysis, because often
statements are useful to us in both their original and contrapositive forms. This
way, if we know a function f(x) never behaves in a certain way, if we note this
behaviour in some unknown we’re looking at, we know for certain that we are
not looking at function f(x).

Thinking back to the chapter on sets and functions, it is very helpful to
write the definition of injectivity in symbols. Our definition, in words, was:

If we have a function, and we also know that we have only one value
of x for each value of y, then our function is injective.

In symbols, this becomes:

If f(a) = f(b) ⇒ a = b, then f is injective.

The reason that we want to put the definition into symbols is so that we can
take the contrapositive of this statement, which gives us the equally useful:

If a �= b ⇒ f(a) �= f(b), then f is injective.

It’s crucial to remember that both of the above statements are a correct def-
inition of injectivity, and both versions are very helpful to us. By taking the
contrapositive we aren’t defining anything new, nor are we setting out condi-
tions for functions not to be injective: we are finding an equivalent definition
for the same idea.
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Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. Find the value of 9 factorial.

2. State the value of 0!

3. How many ways are there of choosing four cards from a set of ten cards?

4. State, using factorials, the definition of
(

n
r

)
.

5. Twenty-five people stand outside a television studio. In a moment, 20 com-
puters will each pick one person, independently and at random. If chosen,
a person will be allowed into the studio to be in a programme’s audience.
How many people should expect not to get in?

6. In a casino, you see a new game on offer. The dealer deals you ten cards
at random from a single deck of cards. You win if you are dealt one heart,
two clubs, three diamonds and four spades, but you lose if you are dealt
anything else. What is the probability that you win this game?
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7. 20% of new mobile phones are produced in Wales, and the other 80% are
produced in Scotland. The probability of a mobile phone from Wales being
faulty is found to be 10%, and the probability of a mobile phone from
Scotland being faulty is found to be 5%. You buy one of these new mobile
phones from the shop, and are pleased to find that it is not faulty. What
was the probability of this happening?

8. What is the probability of rolling a 4 on a fair, six-sided die, given that
you roll at least a 4?

9. There are 100 tiles in a bag. There are two of every tile, and the tiles show
the numbers 1 – 50 (i.e. there are two 1s, two 2s, two 3s. . . ). Given that
you have drawn a number that is greater than 45, what is the probability
that the next tile you draw will show a number greater than 40?

10. In a town, new cars are only sold in two showrooms. The showroom on
the north side of the town sells 30% of the cars, and the showroom on the
south side of the town sells 70% of the cars. 20% of cars sold from the
north showroom are red, and 40% of cars sold from the south showroom
are red. Given that the last car sold in the town was not red, what is the
probability that it was sold on the north side of town?

13.1 Turn that Frown Upside-Down

Before university, probability is always grouped together with statistics. While
many students find this topic interesting and exciting, there are plenty that
don’t, and as such many people overlook just how useful probability is. Here,
we’re going to look at probability as a topic in its own right, not just as a part
of the world of statistics. In this chapter we’re going to first look at the basics of
probability, and then move on to using various “tricks” to solve problems using
probability. Finally, we’ll take a look at the idea of conditional probability, and
see how that can be a useful tool in solving many problems – even ones that
we encounter in everyday life.

In the Beginning. . .

Before we can start working with probability problems, we first need to explore
some of the tools that we’re going to be using to solve them. Some you’ll have
met before, but some you may not have, so make sure that you’re confident
with all of these concepts – and why they’re useful to us. Here we go:
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Factorial: “Factorial” is quite a common weapon in solving probability
problems. Quite simply, to take “the factorial” of any natural number n, we
simply find the value of n · (n − 1) · (n − 2) · · · 2 · 1. That is, we multiply the
number by itself minus 1, then itself minus 2, then itself minus 3,. . . all the way
down to multiplying it by 1. To denote “factorial,” we put an exclamation mark
after the number that we are finding the factorial of. Here are some examples:

• 2! = 2 × 1 = 2.

• 4! = 4 × 3 × 2 × 1 = 24.

• 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720.

One thing to note about factorials is that 0! = 1. Although this doesn’t follow
the way that we’ve defined things above, a whole host of problems that we solve
using factorials go horribly wrong if we don’t insist that 0! = 1, so don’t forget
it! Factorials aren’t defined for negative numbers, nor are they for positive
numbers that aren’t whole numbers.

Choose: The idea of “choosing” is one that will hopefully appeal to your
logical intuition. In probability problems, we often need to ask the question,
“In how many different ways could I choose r balls from the n possible balls?”
Initially, you might think the use of this is rather limited, but in reality this is
one of the most widely used ideas in probability problems. We would need to
use it in situations like these:

• You are dealt five cards from a full deck of 52. What is the probability that
you are dealt exactly three spades?

• You roll a fair, six sided die ten times. What is the probability that you roll
five 1s?

• You flip a coin ten times. What is the probability that you get exactly eight
heads?

The difficulty of these problems varies quite a lot, but the idea of “choosing”
is crucial in all of them. Let’s look at the middle example about rolling a die.
We know that the probability of rolling a 1 is 1

6 , and so the probability of not
rolling a 1 is 5

6 . If you’re going to roll the die ten times, you’re going to need five
1s and five “not 1s.” But we can’t just multiply all these ten fractions together;
we also need to take into account the fact that you might roll your ones on the
first five rolls, on rolls 2, 4, 6, 8 and 10, on rolls 1, 4, 5, 7 and 10, . . ., there are
many, many possibilities. How many exactly? 10 choose 5.

So what exactly is this elusive “choose” function? Well, we write “n choose
r” in one of two ways, and its definition is as follows:
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nCr =
(

n

r

)
=

n!
r!(n − r)!

A few clever tricks to do with the factorial function clarify exactly where this
odd looking expression comes from. Expanding both the factorials in n allows
for a cancellation of the last (n − r) terms:

n!
r!(n − r)!

=
n · (n − 1) · (n − 2) · · · 2 · 1

r!(n − r) · (n − r − 1) · (n − r − 2) · · · 2 · 1
=

n · (n − 1) · (n − 2) · · · (n − r + 1)
r!

To then see where the numerator comes from, think of a situation in which
you might want to put r balls into n boxes. Once a box has a ball in it, it
can’t fit another ball in too. Therefore there are n choices of box in which to
put the first ball, n − 1 choices of box in which to put the second ball, n − 2
choices of box in which to put the third ball, and so on until there are n− r +1
choices of box in which to put the rth ball. Finally, if we assume that the balls
are all identical, it’s not possible to know which order we put the balls into
the boxes. Because we put r balls into boxes altogether, there are r! different
orders that we could have placed the balls in the boxes (because there were r

balls to choose as the “first” ball, r − 1 to choose as the “second” ball and so
on), so in finding the binomial coefficient it is necessary to divide by r! to take
into account the fact that we don’t know what order the events occurred in.

Independent Events

One final concept that we’re going to need later is that of independent events.
We say that two events are independent if the probability of one of them hap-
pening has no impact on the probability of the other happening. When we’re
working with probability problems, it’s crucial that we work out as soon as
possible whether events are independent. For example, to find the probability
of rolling a 4 on a fair, six-sided die and flipping tails on a fair coin, we simply
do 1

6 × 1
2 = 1

12 , because the events are independent. However, to find the prob-
ability of success in the task “Draw a yellow ball then a green ball from a bag
of two yellow and two green balls, without replacement between the draws” we
need to spot straight away that the events are not independent: if we succeed
in drawing the yellow ball first, the probability of then drawing a green ball is
2
3 , because we don’t replace the yellow ball, whereas the probability of drawing
a green ball if no other ball had been drawn is 1

2 . The moral of the story here
is to decide whether your events are independent before you run headfirst into
the problem. Now for some exercises:



13.2 Solving Probability Problems 187

EXERCISES

13.1.1. What is the value of 5 factorial?

13.1.2. Find 8!

13.1.3. How many ways are there of choosing three balls from a set of five
balls?

13.1.4. Find the value of 6C2.

13.1.5. Find the value of
(

8
7

)
.

13.1.6. Using factorials, write the definition of “n choose r.”

13.1.7. What is the probability of rolling “3 or 4” on a six-sided die?

13.1.8. What is the probability of not drawing an orange ball from a bag of
four grey, six purple and ten orange balls?

13.1.9. Are the events involved in, “Draw the 7 of hearts and then draw
the 3 of diamonds, at random from a standard deck of 52 cards”
independent if we do replace the card that is drawn first before
drawing the second?

13.1.10. In finding the probability of the event “Draw the 3 of clubs, then
draw the 2 of clubs, at random from a standard deck of 52 cards,”
are the two individual events independent if we do not replace the
card that is drawn first before drawing the second?

13.2 Solving Probability Problems

In this section we’re going to look at actually solving some problems to do with
probability. Rather than going through lots and lots of text before actually
tackling the problems, we’re going to jump straight into them and explain the
logic of our steps as we go. We’re also going to look into the pitfalls along the
way – learn from the potential mistakes so that you don’t make them!

Clay Pigeon Shooting

Ten hunters enter a field. In a moment, ten clay pigeons will be launched
into the air. Every hunter will simultaneously fire just one shot and
they will each definitely hit whichever clay pigeon they have randomly
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chosen to shoot at. Find out how many clay pigeons the hunters should
expect to survive.

First of all, if you’re tutting, thinking of answering 0 and heading off to the
next question, be ashamed! You’ve not grasped the subtlety of the question.
Each hunter is going to choose the clay pigeon that they fire at at random, and
so it’s quite possible that all hunters will shoot at the same clay pigeon, and
then there would be nine that survive. Let’s think about this mathematically:
Each clay pigeon has a 1

10 chance of being shot by any particular hunter. But
is this particularly helpful to us? We would still need to list all of the possible
combinations of which hunter shoots which bird. Then they would all be equally
probable, and only then would we be able to make any use of this fact.

Instead, we’re going to use the idea of “not”: when we look at the probability
of something not happening, we simply find 1 minus the probability that it does
occur. So the probability of a given bird not being hit by a certain hunter is
9
10 . Because the hunters choose their targets at random, we can say that the
probability of a given bird not being hit by any of the hunters is

(
9
10

)10. This
comes from the fact that the events, “Hunter x doesn’t hit this bird,” and,
“Hunter y doesn’t hit this bird,” are independent for all pairs of x and y:
remember, targets are chosen at random.

So, if the probability of a given bird surviving is
(

9
10

)10, and all of the birds
are equally likely to survive, then to find the number of birds that we should
expect to survive we just multiply the chance of a bird surviving by the number
of birds. Our answer, then, is

(
9
10

)10×10 = 3.49. Because only a whole number
of birds can survive, the hunters should expect that three birds survive.

Cards Games

You are playing a new card game. In this game, you choose five cards
at random from a deck of 52 standard playing cards. You win if you
choose three black cards and two red cards. What is the probability of
winning?

First of all, let’s look at the common mistake: rushing in with the idea, “The
chance of drawing a red card is 1

2 and the chance of drawing a black card is 1
2 ,

so the answer is just
(

1
2

)5. This is wrong. It neglects to spot the fact that the
events are not independent. We’re going to need to use much better logic to
tackle this one.

Firstly, let’s think about which of the tools from the previous section we’re
going to need here. We have to have three black and two red cards as our five,
but the order doesn’t matter. Sounds like a “choosing” problem.



13.2 Solving Probability Problems 189

Now, let’s think about the problem like this: we need to find the number of
winning possibilities, and then divide this by the total number of possibilities.
This will give us the probability that we need.

Firstly, the denominator (the total number of possibilities) is far easier to
find. This is just “the number of ways of choosing five cards from 52” – this is
simply

(
52
5

)
.

Now for the numerator – the number of ways of winning. To win we need
to have drawn three cards from the 26 black ones and two cards from the 26
red ones. Again, we have a choosing problem! The answer to this one is just(

26
3

)
×
(

26
2

)
: we multiply these together because we need both events to happen.

We now have everything we need for our answer:(
26
3

)
×
(

26
2

)
(

52
5

)
We can simplify this and give a decimal as our answer or leave it in this form
if we don’t have access to a calculator.

Cracked Glasses

A new glassware company produces vases in two locations: 30% of their
vases are made in London, and 70% of their vases are made in New
York. Of the vases that are produced in London, 5% are faulty. Of
the vases that are produced in New York, 10% are faulty. What is the
probability that a vase chosen at random is faulty?

The obvious mistake to make here is to try to blindly “average” the two per-
centages of faulty vases. While we are going to do an averaging of sorts, what
we’re actually aiming for is a weighted average because the probability of a vase
coming from London is not the same as the probability of that vase coming
from New York.

We’re definitely going to need a multiplication here, but what are we actu-
ally aiming for? Let’s think back to “and” and “or” from Chapter 11. What
statement do we need to make to ensure that we’ll catch all of the faulty vases?
How about this:

(Faulty and from London) or (Faulty and from New York)

That looks pretty good to me – it makes sure that we’re going to look at all
of the faulty vases, and it takes into account the origin of a vase before trying
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to assign a probability. Now, when we see the word “and,” in probability we
multiply because we need both of the statements to be true. When we see the
word “or” and we’re dealing with mutually exclusive events (this means that if
one happens, the other definitely doesn’t, and vice versa) in probability we add,
because we’re happy for either of the events to occur. So we get the final answer
as being (0.05 × 0.3) + (0.1 × 0.7) = 0.085. This seems reasonable, as it lies
between the two probabilities of being faulty that are dependent on location.

Right, here are some similar problems for you to tackle yourself. Take your
time and make sure that you are logical in your approach.

EXERCISES

13.2.1. There are 20 candidates in a game show. Each of 20 computers will
simultaneously pick, independently and at random, one of the can-
didates to be eliminated. How many candidates should expect to
survive this first round of eliminations?

13.2.2. In the game show, the computers reveal their selections and ten
candidates make it through the first round of eliminations. Now the
20 computers each pick one of the ten to be eliminated. This choice
is again made independently and at random. How many candidates
should expect to make it through this time?

13.2.3. When rolling a fair, six-sided die ten times, what is the probability
of rolling a 2 on the first eight rolls and then a 6 on both the 9th
and 10th rolls?

13.2.4. When rolling a fair, six-sided die ten times, what is the probability
of rolling 2 eight times and a 6 twice?

13.2.5. A newspaper gives away free CDs as part of a promotion. Seven out
of every ten of their papers contains a “Pop Hits” CD and three out
of every ten of their papers contains a “Rock Hits” CD. Because it
is in a sealed bag, people cannot see which CD they’re getting until
after they have bought the paper. The newspaper thinks that there
is a 90% chance that a person chosen at random would enjoy the
“Pop Hits” CD, and a 30% chance that a person chosen at random
would enjoy the “Rock Hits” CD. You speak to a friend who bought
the paper this morning. What is the probability that your friend
enjoyed the CD?

13.2.6. A new ornament has been released by a manufacturer. They made
1000 of the ornaments in total, but 350 of them were made from
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glass and the rest were made from clay. The ornaments are sold in
a sealed box, so when buying the ornament it is not possible to tell
whether you have a glass or a clay edition. Upon an impact, the glass
ornaments have a 9

10 probability of breaking, and the clay ornaments
have a 2

10 probability of breaking. To resell, a broken ornament is
worth nothing regardless of what it is made of, a glass ornament
is worth £100 and a clay ornament is worth £10. You just bought
an ornament, but then dropped it before you could see what it was
made of. What is the expected value of your ornament now?

13.3 Conditioning

There’s one final area of elementary probability left to explore: conditional
probability. We can use conditioning in a massive variety of situations, but it’s
one of those things that’s a bit strange to learn. You see, while the previous
section appealed to your “instinct” in deciding how to proceed, conditioning
is not so pleasant. While you’re learning the ropes, you might even feel that
what you’re doing is sort of wrong – but as long as you follow all of the steps
carefully, you’ll be fine.

Given That. . .

The idea of conditioning is to find the probability of something happening,
given that something else has already occurred. Let’s think about the weather,
for example: If we were trying to guess the probability that it is going to be
sunny tomorrow, we might guess 3

10 . But how about if we also knew that it is
sunny today? Now, we might guess 4

10 : that is, we are saying that the probability
that it is sunny tomorrow, given that it is sunny today, is 4

10 .
This sort of example is fine for illustrating the gist of conditional probability,

but we can make much more precise use of the idea. Imagine that we have just
rolled a fair, six-sided die, and that we haven’t seen the result of the roll but
someone else has. What is the probability that we have just rolled a 3? 1

6 , I hear
you cry. But what if the person who has seen the result of the roll says that the
number rolled was odd? Now what is the probability that we have just rolled
a 3? 1

3 : we know that the only possible outcomes are 1, 3 and 5 now, so our
odds are much better. Written in the language of conditioning, the probability
of rolling a 3 is 1

6 , but the probability of rolling a 3 given that we have rolled
an odd number is 1

3 .
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We can write all of these ideas more formally. When we say, “The probability
of A given B”, we write P (A|B). Make sure that you remember which order
the A and B are in that expression, because the probability of A given B is
most certainly not the same as the probability of B given A.

In making our calculations, if we have a situation that is more complicated
than the one described above, it’s very helpful to have a formula to work with:

P (A|B) =
P (A ∩ B)

P (B)

In words, the right-hand side of this expression is, “The probability of both A

and B occurring, divided by the probability of just B occurring.” Let’s consider
why it’s logical that this is indeed the definition: if we want to test whether A

occurs given that B has just occurred, by the end of our “test” for A to have
occurred then both A and B will need to have occurred (because B already has).
But we know that B has already occurred, and so in finding the probability of
A given B, we need to divide the probability of both A and B occurring by the
probability of B occurring. This is the one and only definition in this section
before we move on to examples, so learn it well!

A spinner is divided into two halves, left and right. The left half con-
tains the numbers 1 - 8 and the right half contains the numbers 9 - 16.
All numbers are equally likely to occur. What is the probability that
you score at least 7 on the spinner, given that you get a score from the
left half?

For those of you that can visualise this problem and “see” that the answer is
1
4 , please feel free to head to the next example. If you’d rather work with the
formula, we need to find two things:

• The numerator of the fraction is P (A∩B). This is the probability of getting
at least 7 and getting a score from the left half, which is altogether equal to
2
16 . This is because in the left half, only the numbers 7 and 8 are good for
us, so these are just two numbers out of the possible 16.

• The denominator of the fraction is P (B). This is the probability of getting
a score from the left half, which is simply 1

2 , because the spinner is divided
in half.

So the solution is just:

P (A ∩ B)
P (B)

=
2
16
1
2

=
1
4

One final example to end the chapter, then some exercises:



13.3 Conditioning 193

Your friend draws a card at random from a pack of 52 cards and shows
you that he has drawn a club. Then, without your friend replacing his
card, you draw a card independently and at random from the remaining
51 cards. What is the probability that the card you drew is a club?

We’ll tackle this question from both a logical and conditioning angle. Firstly,
simply thinking carefully about the problem is a perfectly valid way of obtaining
your solution. Your friend shows you that he drew a club, so of the 51 cards
remaining there are 12 clubs. Therefore the probability that you’re holding a
club is 12

51 = 4
17 ).

Alternatively we can turn to the conditioning formula. The probability of
you drawing a club and him drawing a club is the probability of drawing two
clubs from the deck. We know from earlier that this is a choosing problem, so
the answer is: (

13
2

)
(

52
2

) =
1
17

Now, to find the denominator of our conditioning equation we simply find the
probability that your friend drew a club. Easy – it’s just 1

4 . Now we just do the
final division to get our answer:

1
17
1
4

=
4
17

There we have it – exactly the same answer from two entirely different
approaches.

EXERCISES

13.3.1. What is the probability of rolling a 6 on a fair, six-sided die given
that you rolled at least a 3?

13.3.2. What is the probability of rolling a 2 on a fair, six-sided die given
that you rolled an odd number?

13.3.3. You make a spinner that has four equal sections: blue, red, yellow
and green. What is the probability you spin green, given that you
don’t spin yellow?

13.3.4. You pick a card at random for a set of cards labelled 1 - 100. Given
that you have chosen a number that displays a multiple of 12, what
is the probability that you have chosen the number 60?
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13.3.5. Two factories produce CDs. 40% of CDs are produced in Newcas-
tle and 60% of CDs are produced in Manchester. In the Newcastle
factory 5% of the CDs produced are faulty and in the Manchester
factory 10% of the CDs produced are faulty. Given that a CD is
faulty, what is the probability that it was produced in Newcastle?

Where Now?

The tools we’ve looked at here are the building blocks to some very exciting
ideas in probability theory. Hopefully you’ve seen that these ideas are rigorous
and relevant – two of the main things that many students claim are lacking
from statistics before university.

From here, there are some very famous problems that can be tackled by
adapting the skills covered in the chapter. For example, if you flip a coin ten
times in a row, how would you find out the probability of getting exactly
4 “runs” of heads and tails? It sounds tricky, but it uses something called
“occupancy theory”, which is really only a minor extension to the choosing
problems we explored above.

Imagine that the government need to test for a new blood disease that
affects 0.01% of the population. They could save a lot of time and money by
“pooling blood.” They do this by mixing n samples of blood together and
only doing the test once on this mixture. If the whole sample is disease-free,
everyone in the sample is clear, but if the sample is not disease free, everyone in
the sample needs to be tested individually to see exactly who is infected. The
question is, what is the optimum value of n? Grouping too few people together
will mean that the government has to do a huge number of tests in order to
test everyone. Grouping too many people together is also foolish because then
many of the mixed samples will test positive for having the disease, and then
all of the people involved in these samples need to be tested individually. The
way to solve such a problem starts just like the “clay pigeon shooting” example,
where we need to look at “have nots” rather than “haves”, but from there we
move on to calculus in order to optimise our choice. I’m sure you’ll agree that
these problems are far more involved than you might have expected!

Probability (J. Pitman, Springer-Verlag, 1993) offers a fantastic insight into
many of the exciting uses of statistics. If you want to brush up on your skills
(and even learn some new ones) before starting your degree, we’d strongly
recommend that you take a look. There’s a lot of difficult material there, so
you’ll need to dip in and out, but you’ll definitely be well ahead of the pack if
you take the time to look at even just a couple of the sections.
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Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. Which probability model would we use when we are looking at a series of
events that occur at a known average rate through time?

2. Which probability model would we use when we are looking at a series of
independent repetitions of the same trial, with fixed probability of success?

3. A card is drawn at random from a standard deck of 52 playing cards. The
number on the card is noted and the card is replaced. This is repeated until
ten cards have been noted. What is the probability that exactly four aces
were drawn?

4. A ball is drawn at random from a bag containing two yellow, three red
and four green balls. The colour is noted and the ball is replaced. What is
the probability of drawing two yellow balls if the process is undertaken five
times?

5. A London Underground train driver notes that over the course of a jour-
ney, the average number of people boarding the train is 250. What is the
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probability that, on a given journey, exactly 250 people board the train?

6. A cleaner at an art gallery has to clean around all 1000 exhibits each day.
They note that 1% of exhibits have litter left on them in the course of a
day. What is the probability that five exhibits will have litter left on them
today?

7. If X ∼ B(10, 0.2), what is the mean and variance?

8. If X ∼ Po(5), what is the mean and variance?

9. An astronaut training programme has 5000 students. The probability that
any given pupil will go on to visit the International Space Station is 0.001.
What is the probability that six of these students go on to visit the Inter-
national Space Station?

10. A mechanic has two new car batteries in stock. Of the 1000 people that
visit his shop each day, the mechanic notes that on average, the probability
of a person requiring a new car battery is 0.003. What is the probability
that he won’t be able to meet the demand for new batteries today?

14.1 Binomial Events

One of the key ideas in the world of probability is that of a Bernoulli trial. A
Bernoulli trial is any single event with only two possible outcomes (success or
failure) and with a fixed probability of success. An example of a Bernoulli trial
is “rolling a one on a fair, six-sided die,” with the fixed probability of success
being 1

6 .
This is all very well, but how is this useful to us on a larger scale? Well,

imagine that we were going to roll that same die 100 times. What is the prob-
ability that we roll exactly three 1s? Or exactly 99 1s? This is where we need
the idea of binomial distribution.

The binomial distribution gets its name from the fact that it uses the same
basic principle as binomial expansion of brackets. We’re going to be using the
idea of “choosing,” which was covered in the previous chapter, so if you’re
unfamiliar with this you’ll need to review it now.

Let’s think again about the example with the die. If we’re trying to find
the probability that we roll exactly three 1s out of a hundred rolls, then we’re
going to need three “successes” and 97 “failures.” The probability of any given
trial being a success is fixed at 1

6 , and the probability of any given trial being
a failure is fixed at 5

6 . All of these events are most certainly independent (this
term was covered in the previous chapter) and so we need to multiply things
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together to get our desired answer. That means we’re going to multiply three
lots of 1

6 and 97 lots of 5
6 together, giving us (1

6 )3( 5
6 )97. But wait: what about

the arrangement of these events? Hopefully you’ve guessed it: we need to take
into account the number of way that there are of choosing our three successes
from the 100 trials. This will give us the coefficient

(
100
3

)
(i.e., 100 choose 3)

that we also need to multiply by, giving us the final expression:(
100
3

)(
1
6

)3(5
6

)97

The Wider World

Now that we’ve covered a specific example, let’s attempt to modify what we
did so that we could apply it to any situation where we would use binomial
distribution:

• Consider just a single trial. Find the probability of this single trial being a
success.

• Determine how many trials there are to be altogether.

• Decide how many successes you want to check for.

• Where n is the number of trials, p is the probability of success, q is the
probability of failure (and, as such, q = 1 − p) and r is the number of
successes that you are checking for, substitute everything into the following
equation:

P (X = r) =
(

n

r

)
prqn−r

Are you happy with where all of those steps come from? If not, review the
example with the die and compare what we’re doing there with what we do in
the general case.

There is a standard notation that we use when we’re dealing with the bino-
mial distribution. If we wanted to say, “There is a binomial event in which we
are going to find the probability of X successes from a total of ten trials, all
with success probability 3

20 ,” then we write X ∼ B(10, 3
20 ). That is, in general,

for n trials with success probability p, we write X ∼ B(n, p), and we read the
symbol ∼ as “is distributed.”

Now for some exercises:
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EXERCISES

14.1.1. What is the name of a single trial with only two possible outcomes
and a fixed probability of success?

14.1.2. What is the name of the distribution that we use when we have
many of these trials independently and wish to find the probability
of achieving r successes?

14.1.3. What is the probability that in flipping a coin ten times you get ten
heads?

14.1.4. What is the probability that in flipping a coin 20 times you get ten
heads?

14.1.5. I choose a card at random from an ordinary deck of 52 playing cards,
note the suit of the card and then replace it. Altogether, I undertake
this procedure 25 times. What is the probability that I will have
noted less than two hearts in this time?

14.1.6. I play a game in which I randomly choose a ball from a bag. The bag
initially contains ten balls, five of which are green and five of which
are orange. I then repeat this process four more times, drawing from
the same bag without replacing the balls that I have chosen each
time, giving me a total of five balls chosen. I win the game if I have
chosen exactly four orange balls. Why is it not appropriate to model
this event under a binomial distribution?

14.2 Poisson Events

The Poisson distribution is similar to the binomial distribution in that it can
easily be used simply by remembering a formula. The problem with the Poisson
distribution is making sure that the conditions are right so that it is definitely
appropriate to do so.

We use the Poisson distribution to model events that happen at a fixed
rate in an interval, and that interval is often time. A good example of this
is a receptionist at the switch board of a company receiving telephone calls.
From years of experience, she knows that in a 10 minute block of time she
will receive, on average, 20 phone calls. We can use the Poisson distribution
to find the probability that she receives two phone calls, or that she receives
40 phone calls, in any given 10-minute block. The Poisson is appropriate here
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because we’re looking at events that occur randomly in time, but with a known
“average rate.”

Another example of when we could use the Poisson distribution is this: A
machine makes 100 curtains per hour. It is known that 2% of the curtains that
the machine makes are faulty. What is the probability that, in a given hour,
the machine makes ten faulty curtains?

Both of these questions are real-life examples of where we can put the
Poisson distribution to work. The company that employ the receptionist might
use the Poisson distribution to find out if it is likely that there will be times
that the receptionist has too many calls to efficiently handle, and the curtain
manufacturers may need to know the probability that there are times that the
machine is making so many faulty products that it would be cheaper to replace
the machine than keep destroying faulty curtains. Firstly, let’s formalise the
list of requirements that we have to satisfy in order to actually use the Poisson
distribution, and then we’ll go about solving these two problems.

In order to be able to model an event using the Poisson distribution, we
need to ensure:

• Every event is independent.

• The average rate does not change over the interval we examine.

• The number of events that occur in a given time period depends only on the
length of the time period and the average rate of occurrances.

• Two or more events cannot occur at exactly the same instant.

Just like the binomial distribution, there is a standard way of writing down
events that follow the Poisson distribution. Because now we only have one
parameter to deal with (the fixed rate that the event occurs at), we simply
write X ∼ Po(λ), where λ is this fixed rate.

Now on to solving the two problems set out. We’re going to need a formula
like we did for the binomial distribution, but this time we’re just going to use
it, not look too deeply into why it works. You’ll cover the logic behind why
the formula is what it is at university, but being able to use it is definitely a
big step in the right direction. So, stated without proof, here is the important
formula that needs to be committed to memory:

P (X = r) =
e−λλr

r!

Remember that the r! on the bottom line means “r factorial” – this was covered
in the previous chapter. Right, back to the problems:

With the receptionist, we know that the average number of incoming calls
in any given 10-minute block of time is 20. This means that we can write
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X ∼ Po(20). To find the probability of there being only two phone calls in 10
minutes, we use have the value r = 2. All that remains is a big substitution:

P (X = 2) =
e−20 · 202

2!
= 200e−20

If we go to a calculator we can get the decimal answer (0.000000412, to 3 s.f.),
but in reality leaving our answer in terms of e is perfectly acceptable (many
universities do not allow calculators in exams whatsoever, so you might need
to get used to not using them anymore!). Now for the receptionist’s second
scenario, where we need to find the probability that she receives 40 calls in a
given 10 minutes. This time we’re looking at:

P (X = 40) =
e−20 · 2040

40!

Because numbers like 2040 and 40! are so enormous, there’s not really any
simplification we can do here – it’s perfectly OK to leave the answer like this if
you’re without a calculator (for those of you desperate to use one, it’s 0.0000278
to 3 s.f.).

Finally, let’s take a look at our curtain making machine. This time, we have
a tiny extra step to do: we need to actually calculate the value of λ, because
we’re not given it explicitly. What we are told is that, on average, 2% of the
curtains are faulty, and that it produces 100 curtains per hour. This means we
can quickly see that, for any given hour λ = 2, because this is 2% of the 100
curtains that it produces.

All that’s left is using the equation again. We need to find the probability
that the machine makes ten faulty curtains in an hour, so that’s going to be:

P (X = 10) =
e−2 · 210

10!

=
1024e−2

10!

Again, for you calculator fanatics out there, this comes out to be 0.0000382 to
3 s.f. One thing to notice about all of these answers is that they’re really small.
That’s the interesting thing about the Poisson distribution: it shows us that
when events happen randomly in time, large deviations from the average rate
of occurrance are actually very rare. Now for some problems to try out the new
equation with:
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EXERCISES

14.2.1. What are the conditions under which we can use the Poisson distri-
bution?

14.2.2. How would the statement, “X follows Poisson distribution, with pa-
rameter 7,” be written symbolically?

14.2.3. The residents of a house know that, on average, they receive five
leaflets throught their letterbox per day. What is the probability
that today they receive only two leaflets?

14.2.4. On average, a bakery serves 45 customers per hour. What is the
probability that in any given hour they serve 60 customers?

14.2.5. A greengrocer knows that, on average, they sell 12 boxes of straw-
berries every 20 minutes. What is the probability that they will sell
40 boxes of strawberries in an hour?

14.2.6. A machine produces fibre optic cable. The manufacturer knows that
the machine makes, on average, two dents in the cable per 10 metres.
The manufacturer selects and cuts out 1 m of the cable. This 1 m
can only be sold if it has no dents in it. What is the probability that
the selected 1 m is sellable?

14.2.7. In a primary school, there are 30 children in a class. The teacher
knows that, on average, 10% of the class will be absent from school
on a given day. What is the probability that there are 29 children in
school today?

14.2.8. A mobile phone company knows that, on average, 1% of the calls to
its help centre will be customers wishing to terminate their contract.
It receives 1000 calls on a normal day. What is the probability that
15 of its customers will call to terminate their contracts tomorrow?

14.3 Using Binomial and Poisson Models

We’ve already seen some reasonably straightforward applications of the bino-
mial and Poisson distributions, but we can actually use them together to solve
problems which involve large numbers. Firstly, we’re going to look at some
pieces of information that we can easily find when we know that our data is
distributed in a certain way.
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Mean and Variance

As we’re sure that the definitions of these two things have been drilled into
you, we’ll keep this brief. The mean of a set of data is found by summing all
of the pieces of data and then dividing this by the number of pieces of data in
the set. The variance of a set of data is a measure of how much pieces of data
vary (on average) from the mean. There – not too painful, was it? When we
know that data is distributed in either the binomial or Poisson distribution, it’s
actually very, very easy to find the mean and the variance of our data. Here’s
how it’s done:

• Binomial

· Mean: The mean number of successes is simply the number of trials mul-
tiplied by the probability of success. In algebraic terms, μ = np.

· Variance: The variance of the number of successes is just the number
of trials multiplied by the probability of success, then multiplied by the
probability of failure. In algebraic terms, σ = npq.

• Poisson

· Mean: We define the Poisson parameter in exactly the same way that we
define the mean of the set of data, so μ = λ.

· Variance: The variance is also defined in the same way that we define the
Poisson parameter of the set of data, so σ = λ.

Convenient, eh? We’re now going to look at a handy trick that we can use
when our normal approaches to problems break down.

The way that we worked with the binomial distribution before was simply
to plug values into the equation:

P (X = r) =
(

n

r

)
prqn−r

This works perfectly well for all values of n, p and q, but there are occasions
where we can run into difficulties. Imagine for a moment that we were asked to
solve the following problem: A lavish Las Vegas casino has introduced a new
game. The probability of winning is 0.000005 and in the first year of the game
being offered they expect the game to be played 1000000 times altogether.
What is the probability that 30 people out of the 1000000 participants win?

If we plough straight into the problem without thinking, we’re going to run
into difficulties. You see, plugging these numbers into the binomial distribution
equation will yield this beast:
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P (X = 30) =
(

1000000
30

)
(0.000005)30(0.999995)999970

If you go to your calculator and ask it to do
(

1000000
30

)
, it will politely but firmly

decline. So how can we get around this problem?
Well, we can pull a clever trick. We’ve just found out that when working

with the binomial distribution the mean is np, and when working with the
Poisson distribution the mean is simply λ. So how about using the Poisson
distribution to approximate the solution to this problem?

As it turns out, this trick is incredibly helpful. The value of np here is
1000000 × 0.000005 = 5, so in our Poisson approximation, λ = 5. Now all we
need to do is plug this into the Poisson formula to get:

P (X = 30) =
e−5 · 530

30!

Much nicer, I’m sure you (and your calculator) will agree. The only minor
difficulty that we hit is just how good is this approximation?

As it turns out, it is stunningly good in this case. As a rule of thumb, most
textbooks say this approximation is good enough when “n is large and p is
small”. That’s nice and vague, but with any value of n greater than about 30
and p less than about 0.1, the answer you’ll get from this approximation is
pretty much the same as what you’d get if you slogged through the binomial
method. So our n = 1000000 and p = 0.000005 are going to give an answer that
is pretty much spot on – to any sensible number of significant figures. Here’s
one last example of using this approximation, and then on to the final set of
exercises:

There is a new, very rare disease suspected on a small island. The
population of the island is 10000, and the probability that a particular
person has the disease is 0.0001. The disease is not contagious, so the
probability that a certain person has the disease is independent of how
many other people have the disease. The government of the island only
has enough medication to cure two people of the disease. What is the
probability that they will need to buy more?

With numbers like these, it’s clear that we’re going to need to be approximat-
ing at some point, but let’s take a moment to look at the question carefully.
Rather than finding the probability that they do need to buy more medica-
tion (which would mean finding the probability that 3, 4, 5, 6, 7, 8, 9, . . . , 9999
or 10000 people are infected), it’s much easier to find 1 minus the probability
that they don’t. For them not to need to buy more, either 0, 1 or 2 people can
be infected.
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We first need to look at the probability that no one has the disease: We
can do this in the binomial way because the “choose” coefficient is going to be(

10000
0

)
, which is 1. Hence the probability that no one has the disease is just(

10000
0

)
(0.9999)10000(0.0001)0 = 0.999910000

In looking at the probability that one or two people have it, we’re going to
approximate. In the binomial setup of the question, n = 10000 and p = 0.0001,
so np = 1. Hence in our Poisson approximation λ = 1. Now using Poisson, the
probability that one person has the disease is then:

P (X = 1) =
e−1 · 11

1!
= e−1

The probability that two people have the disease is:

P (X = 2) =
e−1 · 12

2!
=

e−1

2
So, all in all, the probability that the government will need to buy more med-
ication (what the initial question asked) is just:

1 −
(

0.999910000 + e−1 +
e−1

2

)
= 1 −

(
0.999910000 +

3e−1

2

)
Like before, leaving the answer in this form is fine. Here’s a final set of exercises
to ensure you for having a high probability of success in “Test Youself”!

EXERCISES

14.3.1. If X ∼ B(3, 0.2), what is the mean?

14.3.2. If X ∼ B(5, 0.4), what is the variance?

14.3.3. If X ∼ Po(5), what is the mean?

14.3.4. If X ∼ Po(12), what is the variance?

14.3.5. Without giving numerical values, what are the conditions on n and
p that allow us to approximate a binomial distribution to a Poisson
distribution?

14.3.6. What is the main reason that we would want to approximate a
binomial distribution to a Poisson distribution?
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14.3.7. A manufacturer makes, on average, 50000 microchips per year.
Thanks to their excellent quality control, the probability that any
given microchip is sold faulty is 0.00008. What is the probability
that there will be exactly six microchips sold faulty this year?

14.3.8. A dentist sees 1000 patients per year. The probability of any given
patient requiring a new (and expensive) treatment is 0.002, and the
dentist only has one course of the new treatment in stock. What is
the probability that the dentist will need to buy more of it before
the year is out?

Where Now?

Here, we’ve only looked at two of the most basic distributions – but there are
plenty more. The Normal distribution is sometimes taught before degree level,
but needs much more rigorous explanation than it is given, so let’s leave that
one to your lecturers. Probability (J. Pitman, Springer-Verlag, 1993) covers
both the binomial and Poisson distributions in much greater depth than we’ve
had chance to here, and delves into a large number of other distributions, too.

The number of problems that can be solved by modelling a situation as
one of the known distributions is far wider than the selection that we have
covered here. As you learn the more rigorous reasoning behind some of the
topics discussed above, you’ll discover the motivation for a whole new style of
problem. For example, we can use a trick known as “thinning” (or “colouring”)
the Poisson distribution to extend what we’ve already covered, and this lets us
do a detailed analysis of a problem where there are multiple different events
happening through the same period of time. From that point, there are plenty
of new tricks to be employed in order to solve more and more complicated
problems!





15
Making Decisions

Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. Describe briefly the “behavioural” (also known as “subjective”) approach
to probability and state why, in the real world, it is often more helpful than
a “frequency” approach.

2. Describe the spinner which would be viewed as the equivalent bet to flip-
ping two coins simultaneously, and considering two heads a success and
everything else a failure.

3. What percentage of a spinner should be coloured for “success” in order for
it to be equivalent to the bet “choosing a blue ball from a bag containing
seven blue and three black balls.”

4. What angle, in degrees, should the “success” colour of a spinner take up
in order for it to be equivalent to the bet “roll a 3 on a fair six-sided die.”

5. A person states that they will only play a game if, after playing many,
many times, their expected loss is zero and their expected gain is zero.
Describe the utility function that this person has.
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6. Use expected monetary value (EMV) strategy to decide what price should
be charged for a fair game with a 1

10 chance of winning and a £20 prize.
(The original stake is not returned upon winning.)

7. A game costs £1 to play and offers a 1
4 chance of winning a small prize

and a 1
8 chance of winning a large prize. It is possible to win both a large

and a small prize at the same time, and the events “winning a small prize”
and “winning a large prize” are independent. A large prize is £5, and if a
prize is awarded then the original stake is not returned. How much should
the small prize be so that the EMV strategy of the game results in no gain
and no loss?

8. What should the probability of winning a prize be if a game is fair, costs
£5 to play and rewards £42 for a win? (The original stake is not returned
upon winning.)

9. A gardening centre needs to buy plants for an upcoming show. They can
either buy 500 plants for £250 or 200 plants for £150. At the show, if it is
sunny they expect to sell 480 plants. If it is not sunny they expect to sell
100 plants. At the end of the show all unsold plants will have to be thrown
away. Plants sell for £2 each. The weather forecast predicts a 10% chance
of rain for the day. Should they opt for 500 or 200 plants?

10. An estate agent needs to recruit new staff for the coming summer. If busi-
ness is good in the summer, they will need ten new employees. If it is bad,
they will only need two.

They can go to recruitment agency A, who will find them up to 12 employ-
ees in time for the summer. The cost of this service is £10000. Alternatively,
they can go to recruitment agency B, who will find them up to three em-
ployees in time for the summer. The cost of this service is £4000.

Once the summer arrives, every member of staff that the company is short
on they will need to recruit themselves. The cost of doing this is £2000 per
employee. Any surplus employees found by agencies can be declined at no
cost.

Advise the estate agent which agency to choose.

15.1 A Whole New Probability

For those of you in a hurry, this chapter is probably the least essential in the
book. Before degree level, “decision mathematics” is an optional application,
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and in your degree we’d be very surprised if it were compulsory in the first
year. Despite this, decision analysis is an exceptionally “employable” skill in
both senses of the word: we can use it often in everyday life, and it is highly
sought after by those in the professional world. We’d thoroughly recommend
that you see what this chapter has to offer and, if you enjoy the material, to
seek out a course on decision analysis in your studies.

How Many Is Many?

“Decision mathematics” before university focuses heavily on the implemen-
tation of algorithms (is that really mathematics? I digress. . . ). The decision
mathematics beyond this – and indeed in the “real world” of financial markets
and risk analysis – is far more concerned with making decisions in the face of
some uncertainty. For this, it’s helpful to take a whole new slant on the idea of
probability.

If you’ve done some previous study of statistics, you’ll know the great diffi-
culty in coming up with a definition of “probability”. We’re going to look now
at some different attempts to quantify this elusive character.

The frequency approach to probability is one that you’re probably familiar
with. The frequency approach is the idea that the “probability” of an event
happening is equal to the number of times it happened, divided by the number
of trials. Although most people are happy to accept this idea because it “seems
right,” statisticians have a big problem with it.

First of all, in the form just stated, it is just plain wrong. If I roll a die
once and do not roll a 6, does that mean that the probability of rolling a 6
is 0

1 = 0? No, of course not, but to get around this problem we have to add
the clause that makes mathematicians vomit: “When we repeat the experiment
many times.”

If you’re not sure as to why people are so averse to this, it’s the word
“many” that does it. How many is many? 100? No. If we repeat the trial 100
times it’s highly unlikely that exactly 1

6 of the rolls will be a 6 (actually, it’s
impossible because 6 doesn’t divide 100 without remainder, but our worries are
far greater). Because of the random outcomes of the trials, we might get zero
6s, or we might even get 100 6s. So how about 1000 trials? Or 1000000? Can we
be sure that after any finite number of trials our “probability” will be exactly
1
6? No.

What we have to settle for is this statement, which is commonly referred to
as “the golden theorem”:

When the number of trials tends to infinity, the number of successes
divided by the total number of trials will tend towards the probability
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of a single success, with probability 1.

Not quite so nice, eh? We actually have to use the word “probability” in our
definition of the word “probability,” which is hardly ideal. Besides, this “tends
to infinity” business is all very theoretical, and the process of decision making
is very real. Because it is impossible for us to have “infinite trials” of an event,
suddenly the frequency approach to probability isn’t looking so hot.

Let’s take a look at a different approach: geometric. This is the idea that,
for any event, we could make a circular spinner with different colours on it,
so that the “probability” of something happening is equal to the “probability”
of the spinner landing on a certain colour. So if we were making a spinner
about the event “rolling a 6 on a fair, six-sided die” and we already knew that
the “probability” of this (whatever that may mean) was 1

6 , we would make a
spinner that was 5

6 red and 1
6 green, with green corresponding to a success.

Notice that the geometric approach to probability doesn’t actually make any
attempt to define the word “probability.” It is simply an approach.

Now that we have this idea in place we can start to look at what is really
helpful to us: the behavioural approach to probability. This fascinating concept
deals with one of the three vices of modern mankind – gambling (the other
two being lust and intoxication, and being a student you’ll naturally partake
in neither). Interestingly enough, using gambling as our motivation produces a
very useful approach to probability.

Imagine the scene: A friend offers you a bet. You win some reward if you
win the bet, but you lose nothing if you lose. We won’t worry about how much
you win, we’ll just assume that you are happy to bet anyway because there is
something to be gained but no chance of losing anything. Your friend hasn’t
told you what the bet is on yet, so you sit down at a table and watch as they
pull out a spinner and a fair, six-sided die. The spinner is 1

4 green and 3
4 red.

They say:

“You can choose which of these to play. If you play the spinner, you
win if the spinner lands on green. If you choose the die, you win if you
roll a 4.”

You choose to play the spinner, because your chance of winning seems greater.
But then your friend says:

“Actually, I’ve changed my mind. I don’t like that spinner. We’ll use
this one instead. Now would you rather play the spinner or roll the
die?”

The new spinner that you’re offered is 1
8 green and 7

8 red. You say you’d rather
roll the die now, to which your friend says:
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“Actually, I’ve changed my mind. I don’t like that spinner. We’ll use
this one instead. Now would you rather play the spinner of roll the
die?”

This process repeats about 30 times, and you notice something: If you say you’d
rather roll the die, the next spinner that you’re offered will always have slightly
more green than before, and if you say you’d rather play the spinner, your
friend next offers you a spinner with slightly less green than before. What’s
more, every successive time a spinner is offered, the amount of change from the
previous spinner gets less and less. Eventually, the spinner that is offered to you
looks to have about the same chance of landing in the green as you think you
have of rolling a 4 on the die, so you say to your friend that you are indifferent
between the two. At this point your friend pulls out a protractor, measures the
angle of the green section of the spinner and divides this by the full 360 degrees.
This fraction is your personal evaluation of the probability of rolling a 4 on the
die, because you said that you think the probability of rolling the 4 is equal to
the probability of the spinner landing on the green. In our examination of the
geometric approach to probability we said that for every event we could make
such a spinner – and here we’ve used the behavioural approach to do exactly
that.

One final thing to note about the behavioural approach to probability is
that it only finds a particular person’s opinion on the probability. For an event
where there is no known, fixed probability of success, different people may be
indifferent between the two bets at very different points. For example, betting
on a football match, person A might be indifferent between the two bets “land
on green” or “team X wins” when the spinner is 1

3 green, but person B may not
say so until the spinner is 9

10 green. For this reason we say that the behavioural
approach to probability doesn’t tell us the probability of an event occurring,
instead it tells us an individual’s personal elicitation of the probability of an
event occurring.

EXERCISES

15.1.1. Briefly describe the frequency approach to probability.

15.1.2. What is the main difficulty that faces us if we are only prepared to
consider the frequency approach?

15.1.3. State the golden theorem (i.e., the rigorous idea behind the frequency
approach).

15.1.4. In the geometric approach, what fraction of the spinner should be
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coloured for “success” to represent the probability of a fair coin
landing heads up?

15.1.5. In the geometric approach, what angle (in degrees) should the “suc-
cess” part of the spinner take up to represent the probability of
choosing a white ball from a bag of three white, four black and three
grey balls?

15.1.6. An individual is indifferent between a spinner bet and the bet “team
A wins a cricket match” when the “success” portion of the spinner
has an angle of 54 degrees. What is their personal elicitation of the
probability that team A wins the match?

15.2 Story Time

Until actually visiting a casino, Hannah found it difficult to understand why
anyone ever played roulette. Games like Blackjack have been proven by some
professionals to be “beatable” by a skilled player, but short of the handful
of people worldwide who claim to be able to analyse the path of the ball to
predict its resting place with some degree of accuracy, roulette is a bad bet for
the player. In roulette there are 37 possible outcomes and a win for the player
is paid at 36 to 1 (with the original stake not returned upon winning). Before
actually standing at those tables, Hannah found it hard to see why people
would play a game that offered those kinds of odds. Anxious to find out more,
she flew to Vegas.

When she’d watched the game for just a few minutes, she had chips in one
hand, wine in the other, and was in on the action. The excitement of the game,
the thrill of watching the wheel slow to a halt, the prospect of winning a large
sum of money for a small outlay: all of these factors added up to her loving
every minute of it. You see, she enjoyed playing so much that she was prepared
to excuse the slightly unfavourable odds to the player.

The reason Hannah could never see why people played the game initially
was that she was viewing the bet solely in terms of expected monetary value
(EMV) – she could see that for every £37 that she placed on the table, she
should expect to lose £1. But when she saw the draw of the tables, she adopted
a different approach: She was what decision analysts call “risk taking.” Both
EMV and this “risk taking” approach are examples of utility functions:

A utility function is a function that assigns a value to a reward.

What the definition is saying is that a player in a game might value the reward of
that game in a “strange” way. EMV strategy is the most basic utility function:
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it assigns a value exactly equal to the reward. So a player playing EMV strategy
would only play roulette if the game offered 37-to-1 or better: They would never
play a game where they expected to lose some money if they played many, many
times.

But there are plenty of other utility functions out there. Consider the fol-
lowing two scenarios:

Firstly, you are at the seaside and there is a competition. It costs £1 to
play. You choose a ball from a bag containing 1001 balls, 1000 of which are
white and one of which is gold. If you choose a white ball, you lose your £1. If
you choose the gold ball, you get your £1 back, and another £999, giving you
£1000 in total.

Secondly, you spot another competition. It costs £1000 to play. You choose
a ball from a bag containing 1003 balls, 1002 of which are gold and 1 of which
is white. If you choose the white ball, you lose your £1000. If you choose a gold
ball, you get your £1000 back, and another £2, giving you £1002 in total.

The question now is which of these games do you play? The EMV strategy
works like this:

Playing game 1 1001 times, £1 per play = £1001 outlay. Expected return
is 1000 losses and 1 win, so £1000. Total loss of £1.

Playing game 2 1003 times, £1000 per play = £1003000 outlay. Expected
return is 1002 wins and 1 loss, so (1002× 1002)− 1000 = £1003004. Total gain
of £4.

So by EMV strategy, where we simply look at what would happen if we
played the game enough times for all of the possible outcomes to occur, the
second game is better. But if you were walking along and saw these two games,
would you really play the second one? Risking £1000 for only £2 in potential
reward seems very bad, even though you are very, very unlikely to lose your
£1000. The chance of gaining £999 in the first game for just £1 in outlay is
very attractive, though – if you had to play one of the two games, wouldn’t
you opt for the first?

The explanation behind this logic again lies with utility functions: we value
the first reward much more highly than we do the second, and so our utility
function makes it seem more attractive. This sort of reasoning is exactly why
Hannah found roulette so enticing: the reward for a win was quite large, and
she didn’t feel that her outlay was particularly high. People employ similar
thinking every week when they play lotteries with massive jackpots: they know
that their chance of winning is very low, but the reward for doing so is life
changing so they value it highly enough to excuse the unfavourable odds.

Utility functions play a huge part in everyday life – they are pretty much the
sole reason that businesses dealing with risk exist in the first place. Consider
a home insurance firm. They’ll charge a customer premiums that are slightly
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higher than they should be if they used EMV to work out the chance of the
customer making a claim, multiplied by the cost to the company if they do so
– and yet the customer is more than happy to pay this because if they weren’t
insured and got burgled, they might end up having nothing at all.

In the next section (where we look at how to solve decision problems) we’ll
look at working with some numerical values in utility functions, but for now
here are some more theoretical exercises:

EXERCISES

15.2.1. What is a utility function?

15.2.2. At a school fundraising event there is a game that costs £1 to play.
You spin a spinner and if the spinner lands on the green section,
which covers 4

10 ths of the board, you win. Use EMV to work out
how much the prize should be for doing so (including the money
that you bet initially).

15.2.3. A game offers a reward of £10 to a winning player, with a 1
50 chance

of winning. What should the owner of the game charge people to
play if he wants to expect to make a profit? Give your answer as an
inequality.

15.2.4. After some research, the owners of the game in the previous question
find that the players of the game have a utility function of 1.2 times
the actual reward; that is, they enjoy the risk of the game so much
that they value the prize at 1.2 times its real monetary value. What
would be the best price for the owner of the game to charge now?

15.2.5. A game costs £2 to play, and offers a reward of £100 to a winning
player. What probability of winning should the game have for the
game to be “fair” for both the player and the owner?

15.2.6. The game in the previous question takes a very long time to play, and
it turns out that players find it boring. This results in them having
a utility function of 0.8 times the actual reward. What probability
should the game have of winning for it still to be attractive to players,
despite this “risk-averse” utility function? Give your answer as an
inequality.

15.2.7. A computer owner knows that, in any given year, the probability
they will need to make a claim on their insurance is 1

30 , and that
if they do so the claim will be for £1000. They know that they
will never need to claim more than once in a year. Assuming that
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the insurance company wants to expect to make some profit, what
monthly premiums should the person expect to be charged? Give
your answer as an inequality.

15.3 Decision Problems

Now that we have explored the ideas of probability and utility functions, we’re
going to end the chapter by looking at decision problems. Decision problems
are problems where an individual has to choose their decision from a range of
possibilities in the face of some uncertainty.

Decisions, Decisions. . .

Decision problems include a whole range of things, so here are some examples:

• A company choosing the pay rise to offer their employees. Too high will cost
the company too much money, but too low and employees might start looking
for jobs elsewhere, meaning the company will have to spend more money on
recruitment.

• An individual deciding how many advertisements they would like to place in
a newspaper for their new product. Too few advertisements and the prod-
uct won’t sell very well, but too many and the advertisements will only be
reaching the same people multiple times, and still cost the individual money
to place them.

• How much food to buy for a party. Too little and people will eat it all and
get hungry, too much and some of it will go to waste.

If we can deal with problems like these in a numerical way, we can get a definite
answer of what is a good decision. Here are a couple of worked examples:

An individual wishes to set up a company for printing leaflets. To do
so, they will need to buy a printer. There are two such printers on the
market:
• A small printer – this costs £2000, and can print 1000 leaflets per

day.
• A large printer – this costs £8000, and can print 5000 leaflets per

day.
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Both of the printers have a lifetime of 100 days – that is, after 100
days of operation they will become useless and have no resale value.
The individual is trying to get one of two different printing contracts.
If they get contract A, they will be able to sell 4500 leaflets per day. If
they don’t get contract A, they will definitely get contract B, but will
only be able to sell 800 leaflets per day. They will earn 10p per leaflet
sold. Use EMV strategy to advise on the decision of which printer to
buy.

Hopefully you can see the difficulty here: The individual has to choose which
printer they want to buy before they find out which contract they’re going to
get. We have lots of monetary values given in the question, but we don’t know
the probability of getting contract A or contract B. This means that the answer
we give is going to be of the form, “If you think that the probability of you
getting contract A is greater than p, then buy the large printer. If not, buy the
small one.”

To solve a problem like this, we start by drawing a table. There are two
possibilities for the decision, and also two possible outcomes in terms of which
contract is awarded, and so we have four possibilities altogether:

• Buy small printer, get contract A.

• Buy small printer, get contract B.

• Buy large printer, get contract A.

• Buy large printer, get contract B.

In our table, we can put the profits earned by the individual in each of the
cases. For example, in the “small printer, contract A” cell, we calculate 1000
leaflets per day, times £0.10 per leaflet, times 100 days, minus £2000 cost for
the printer = £8000 profit overall. Doing a similar calculation for every cell,
we get:

Small Large
A 8000 37000
B 6000 0

From this point, we need to go on to find the expected value of the profits.
The only problem here is that we don’t know the probability of the individual
getting contract A, so let’s call that x1, and we’ll call the probability that the
individual gets contract B x2.

To get our final answer we’re going to need to draw a graph of two lines
to do with the probabilities and see where they intersect. We know that the
individual will get one of the contracts, so we know for sure that x1 + x2 = 1.
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We can use this fact to do a clever trick: if we imagine that, for a given decision,
x1 = 1, then we know for sure that x2 = 0. This is one point on one of the
lines. Then if we imagine that, for the same decision, x1 = 0, then we know for
sure that x2 = 1. This is another point on the same line. Because the line is
going to be straight, now that we have these two points we can draw the line.
Then we just repeat the process for the other line and we’re done. That might
seem a little tricky in words, so here’s the working for our example:

• Decision 1: Profit = 8000x1 + 6000x2

• Decision 2: Profit = 37000x1 + 0x2

We are going to plot “profit” as the y-axis and “x1” as the x-axis, so for
the line of decision 1, we have a point at (0, 6000) and another at (1, 8000).
For the line of decision 2, we have a point at (0, 0) and another at (1, 37000)
(remember, when x1 = 0, then x2 = 1). Figure 15.1 shows the graph.

Figure 15.1

We need to find the point where the two lines intersect. To do this we’re
going to need the equations of the lines. For the small printer, the line starts at
6000 and increases by 2000 over the course of the graph. For the large printer,
the line starts at 0 and increases by 37000 over the course of the graph. This
means that our two equations are just:

y1 = 6000 + 2000x1

y2 = 0 + 37000x1
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Solving simultaneously:

y1 = y2 when 6000 + 2000x1 = 37000x1

35000x1 = 6000

x1 =
6
35

So there we have it. If the individual thinks the probability of getting contract
A is greater than 6

35 , then he or she should buy the large printer. If he or she
doesn’t, then the small printer should be the choice.

Have a quick review of that last example question. It’s a weird combination
of logic and mathematics, so it might seem a little strange. When you’ve mas-
tered the basic idea of these things, they’re all pretty similar, so you shouldn’t
have any major difficulties tackling them once you’re at university and doing
problems like this for assessment! Anyway, if you’re happy with the previous
example, here’s one more, and then some exercises to round off the topic:

A comic book seller is looking to extend their range. They have the
option of buying a box of either Superdude or Awesomeguy comics,
but not both. A box of 100 Superdude comics costs £1000, while a box
of 100 Awesomeguy comics costs £500. At an upcoming comic fair,
the seller will be assigned one of two pitches. If they are assigned the
blue pitch, they expect to sell 95 of these new comics, and if they are
assigned the yellow pitch they expect to sell 30 of these new comics. A
Superdude comic will sell for £14 and an Awesomeguy comic will sell
for £6, but at the end of the fair the seller will have to throw away any
unsold comics because of lack of storage space.

Just before making the purchase, the seller finds out that the prob-
ability of getting the blue pitch is 4

10 , and the probability of getting
the yellow pitch is 6

10 . Which comics should he buy?

Let’s start by drawing the table of profits:

Superdude Awesomeguy
Blue pitch 330 70

Yellow pitch −580 −320

This means that we find the points (0,−580) and (1, 330) on the line of the
decision to buy Superdude, and the points (0,−320) and (1, 70) on the line of
the decision to buy Awesomeguy. These yield the equations y1 = −580+910x1

and y2 = −320 + 390x1. Solving simultaneously:
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y1 = y2 when − 580 + 910x1 = −320 + 390x1

520x1 = 260

x1 =
1
2

So he should choose to buy Superdude only when the probability of getting the
blue pitch is greater than 1

2 , which it isn’t here. This means that he should
choose to buy Awesomeguy.

EXERCISES

15.3.1. A car salesman can buy one of two types of mats for their cars. A
set of standard mats costs £5 and sells for £20 and a set of deluxe
mats costs £8 and sells for £35. The salesman can only buy mats in
boxes of 1000 sets.

If the year is a “good” year he will sell 1000 sets and if the year is a
“bad” year he will sell 400 sets.

Advise the salesman which mats to buy.

15.3.2. A bank is trying to attract new customers by offering them a free
gift for opening an account. They can buy either 500 such gifts for
£5000, or 1000 such gifts for £9000.

If the bank attracts corporate business they expect to attract 950
new customers, but if they don’t then they expect to attract only 200
new customers. They predict that the chance of attracting corporate
business is 8

10 . If they attract a customer but cannot offer them the
free gift, they will lose the customer. The bank earns £25 for every
new account that is opened.

Should the bank buy 1000 of the free gifts, or just 500?

15.3.3. A new company wishes to open a stationery shop on a high street.
They can either choose a large unit with rent of £1000 per week or
a small unit with rent of £600 per week. If the stationery shop is
popular they will make £5000 profit on their sales in the large unit,
or £2000 profit on sales in the small unit (these prices exclude the
rent payment). If the stationery shop is unpopular they will make
only £700 profit on sales, regardless of which unit they are in.

Advise the company which unit to invest in.
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Where Now?

Decision analysis moves very directly into an area of mathematics that is cur-
rently expanding rapidly: game theory. In mathematics, a game is simply any
situation where two or more people make a decision simultaneously, without
knowing which decision the other “player(s)” will make, and where the deci-
sions of everyone interact. In this way, “games” are everything from poker to
operations in control rooms during a war. Finding the optimal strategy to play
on an opponent’s weaknesses, or even finding the most cooperative strategy, are
all part of game theory. Because of the complexity of many of the strategies,
only the most basic “games” are explored in the first year of a course on such
a topic, yet the material is still fascinating.

Outside of this, decision analysis as a skill in its own right can be extended
greatly beyond what we’ve looked at here to include situations where there
are many more than two possible choices to be made, and also to situations
where more than one decision has to be made at a time. In the financial world,
decision analysis is a very sought after skill indeed. Game Theory: A Very Short
Introduction (K. Binmore, Oxford University Press, 2007) is an interesting text
which explores the wide world of game theory and decision making.
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Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. Is reflection in the line y = x an isometry in the plane?

2. Is translation by
(

3
1

)
an isometry in the plane?

3. Are the triangles in Figure 16.1 congruent?

Figure 16.1
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4. Are the triangles in Figure 16.2 congruent?

Figure 16.2

5. Find angle x in Figure 16.3, given that O is the centre of the circle.

Figure 16.3

6. Prove that for any circle, the angle from an arc to the centre is twice the
angle from that arc to the edge.

7. Find x in Figure 16.4.

8. Prove that for any triangle:

a

sin A
=

b

sin B
=

c

sin C
= 2R

where R is the radius of the circle whose circumference meets all three
corners of the triangle.

9. What is the sum of the angles of an equilateral triangle on the sphere, one
of whose sides is part of an equator and one of whose points lies at the
“north pole”?
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Figure 16.4

10. What range of values could we get when summing the angles of a triangle
drawn on an upper hemisphere?

16.1 Old Problems, New Tricks

One thing that is sadly absent from pre-university mathematics is Euclidean
geometry. In both pure and applied mathematics, geometry lies at the very
heart of many problems, yet most people come to university knowing no more
than how to “spot” when we can use certain rules on angles in a circle and
roughly how to work with triangles. In this chapter we’re going to prove some
of the things that you’ve been happily applying for some years, and also look
at some 3-dimensional geometry.

Transformations and Isometries

As we’re sure you’re aware, there are four basic transformations that we can
apply in two dimensions (matrix representations of these were explored in the
chapter on matrices as maps). They are:

• Translation – “moving” things, but keeping them at the same orientation
and size.

• Dilation – also known as “enlargement,” this is about making things bigger
or smaller.

• Reflection – taking the “mirror image,” through some given line of reflec-
tion.

• Rotation – “spinning” a shape by a certain amount, around a given centre
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of rotation.

With these tools, we can move and change shapes in all kinds of ways. For
this reason, we have the word isometry to describe any transformation that
preserves the distance between any two points. This means that translation,
rotation and reflection are all isometries in the plane, but enlargement is not.
Lots of the geometry studied in a degree course relies heavily on this idea, so
learning this definition now is definitely time well spent:

The map f of the plane is an isometry if for every two points A,B:

distance(A,B) = distance(f(A), f(B))

Just have a quick think about what the definition is saying. There’s nothing
too spectacular going on here.

Congruence

Before university, it is good enough to know that two triangles are congruent
if you can move, flip and rotate one of them and get it exactly on top of the
other one. This is definitely a good way to visualise what’s going on, so don’t
lose sight of it, but there is a sneaky “cheat” way to check if two triangles are
congruent.

If two triangles meet any of the following three congruence criteria,
then they are congruent:
• SAS (side-angle-side)
• ASA (angle-side-angle)
• SSS (side-side-side)

Now, these will probably look a bit mystifying, so here’s a guide to what they
mean: If you have two triangles, and tracing in a single direction, you see
that both triangles are identical in one of the above ways, then the triangles
are congruent. Don’t worry if that doesn’t seem totally clear – here are some
examples:

Are the triangles in Figure 16.5 congruent?
Here we have an example of the SAS congruence criteria: side-angle-side. If

we read clockwise around triangle ABC, starting with side AC, we get 7, π
3 , 6

as our SAS. If we read anti-clockwise around triangle DEF , starting with side
DF , we get 7, π

3 , 6 as our SAS. These are the same, so our triangles are definitely
congruent. Notice that it didn’t matter that we went around each triangle in a
different direction: all that was important was that we went in some direction
and didn’t “jump around.” Here’s one last example to illustrate this:
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Figure 16.5

Are the triangles in Figure 16.6 congruent?

Figure 16.6

Trace around either triangle and you get 5, 7, π
5 from a clockwise trace or

π
5 , 7, 5 from an anticlockwise trace. This is SSA or ASS respectively. Note that
neither of these were criteria for congruence, so we can’t say that our triangles
are congruent. We can’t say that they definitely aren’t, because they still might
be, but the important thing is that we can’t say that they definitely are.

EXERCISES

16.1.1. Is rotation by π
4 about the origin an isometry?

16.1.2. Is dilation, scale factor 2, about the origin, an isometry?

16.1.3. Is rotation by π
4 about the origin then dilation, scale factor 2, about

the origin, an isometry?

16.1.4. I reflect a shape in the line y = x, then dilate it by scale factor z,
about (z, z). This composite transformation is an isometry. Find z.

16.1.5. Are the pairs of triangles in Figure 16.7 congruent, not congruent or
can we not determine for certain?
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Figure 16.7

16.2 Proof

As promised in the opening of the chapter, we’re now going to look at some
formal proof.

The Sine Rule

At this point in your mathematical career, it’s fairly certain that you’re familiar
with this bad-boy:

a

sin A
=

b

sin B
=

c

sin C

We would also bet that you don’t know where on Earth it actually comes from
– or also that, in proving it, we actually get a “bonus bit” for free, making the
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rule:

a

sin A
=

b

sin B
=

c

sin C
= 2R

Asserting that the sine rule “must” be true simply because it happens to work
on all of the triangles we’ve tested it on is not good enough for us fussy mathe-
maticians. What we want is a formal proof of what’s going on, without initially
assuming the rule to be true.

Proof invariably plays a major role in university exams, but you’ll quickly
come to learn that memorising proof is no good. University exam papers have
an annoying tendency to be written by some rather clever people, and so they’ll
have you adapt a proof that you already know to fit a new situation, not just
ask you to write a proof out. For this reason it’s crucial that you understand
proof and not just remember it.

An Old Friend

Before we go headfirst into the sine rule, we’re going to prove something that
we’ll need later. This way, we can be sure that when we use it, we’re not opening
a window for error to creep in. Here it is:

The angle subtended from a chord to the centre of a circle is twice the
angle subtended from that chord to anywhere on the edge of the circle,
on the same side as the centre.

Again, this is no doubt something that you’ve been using for years without
knowing a formal proof, but make sure that you’re careful of that final clause:
“on the same side as the centre.” If we try to work with something like Figure
16.8, where we’re joining our chord to the edge of the circle on the opposite
side of the chord to the centre, we run into problems (we can see by eye that
the angle at the centre is certainly not twice the angle at the edge).

So, being careful to construct the diagram correctly, in our proof we must
be in one of the two situations shown in Figure 16.9.

We’re going to progress by taking the diagram on the left, but if you head
to “Where Now?” you’ll see that a short extension to the proof ensures that
it’s valid for the diagram on the right too. Take a look at Figure 16.10 and then
let’s go!

Draw a dotted line from where the two lines from the chord meet the edge
of the circle, through the centre of the circle, to the opposite side. Label the
diagram as in Figure 16.11, and note that we can be sure that the angles
labelled y are both equal because the triangle that they are in is isosceles.
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Figure 16.8

Figure 16.9

Now the proof:

1. x + 2y = π (angles in a triangle add up to π).

2. x + z = π (angles on a straight line add up to π).

3. So 2y = z.

Figure 16.12 is the same diagram again, but this time with the other half
labelled.

So by the same logic:

1. a + 2b = π.

2. a + c = π.
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Figure 16.10

Figure 16.11

3. So 2b = c.

Combining these:

1. 2y = z and 2b = c.

2. So z + c = 2y + 2b.

3. Hence z + c = 2(y + b)

The angle at the centre is (z + c). The angle at the edge is (y + b). There we
have it!

Now we’ve done that, let’s take a look at a step-by-step proof of the sine
rule. You’ll probably need this proof in your first course on geometry, so now
is as good a time as any to really get to grips with it.
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Figure 16.12

Start by drawing a circle, and draw a chord on the circle, like in Figure
16.13.

Figure 16.13

Now join each end of the chord to the centre, and draw the line from the
centre to the chord that meets at right angles, as shown in Figure 16.14.

These two triangles are congruent: We had an isosceles triangle and sliced
it down its line of symmetry, so now we have the SAS (or the ASA) congruence
criterion. Consider the whole length of the chord to be a, so each of the smaller
triangles have base a

2 . By the triangle-labelling convention of using the same
letter for a side and the opposite angle, the two points where the chord meets
the circle are B and C, as shown in Figure 16.15.

Mark a point anywhere on the “longer” part of the circle, and join this point
to B and C (because we used “Case 1” in the previous proof, we’re choosing
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Figure 16.14

Figure 16.15

our point so that the diagram we work with looks like that. Choosing a point
that would instead place us in “Case 2” of the above proof is fine too; remember
we explore this case in “Where Now?”). Now we can also finish labelling the
triangle in Figure 16.16, including the points D and O that we’ve added for
reference.

Here’s the logic. Make sure that you follow every step!

1. BOC is isosceles, so 2BÔD = BÔC.

2. BOD is a right-angled triangle, so we can use the fact that BO is the
hypotenuse to deduce BD = BO sin BÔD.

3. BO is the radius of the circle, so we can write BD = R sin BÔD.

4. BD = a
2 , so we can write a

2 = R sin BÔD.
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Figure 16.16

5. a = 2R sin BÔD.

6. From the proof we’ve just done, the angle at the centre is twice the angle
at the edge, so BÔC = 2BÂC.

7. BÔC = 2BÔD (same logic as step 1).

8. 2BÂC = 2BÔD, so BÂC = BÔD.

9. From step 5, a = 2R sin BÂC.

10. a = 2R sin A, so a
sin A = 2R.

Finally, imagine instead that we had chosen AC as our line to bisect. Then we
would get b

sin B = 2R. If we had chosen AB, we would have gotten c
sin C = 2R.

And there we have it: a
sin A = b

sin B = c
sin C = 2R. If you’re anxious to try it

out again fully on your own, that’s great; it works every time. Just in case
you’re still wondering what the bonus R actually stands for, it’s the radius of
the circle that we draw around the triangle. The circle isn’t just there to look
pretty after all!
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EXERCISES

16.2.1. Find angle x in Figure 16.17.

Figure 16.17

16.2.2. Which pair of angles are equal in Figure 16.18?

Figure 16.18
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16.2.3. Which angle is a + b equal to in Figure 16.19?

Figure 16.19

16.2.4. What is equal to OC sin CÔD in Figure 16.20?

Figure 16.20

16.2.5. Write the necessary facts to show:

b

sin B
= 2R

16.2.6. Draw a new diagram and show that c
sin C = 2R.
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16.3 3D Geometry

All of the geometry that you’ve dealt with so far will probably have been 2-
dimensional geometry “on the plane.” But what happens if we take some of the
things that we know “work” in the plane and then try them on some non-flat
spaces, like the sphere? Surely everything works the same, right? Wrong.

Challenge Everything

Let’s look at a fact that we all take for granted: “The angles in a triangle
always add up to π.” Now, imagine the Earth as a perfect sphere and, upon
your imaginary Earth, draw the equator – but only 1

4 of the way around. Join
the left end of this line to the North Pole. Then also join the right end to the
North Pole, so now the left and right ends meet. We have a triangle on a sphere.

The angle between the equator and the left line to the North Pole must
be π

2 because if we look at our imaginary Earth with that point facing us, we
would see what’s depicted in Figure 16.21.

Figure 16.21

Similarly, the angle between the equator and the right line to the North Pole
must be π

2 . Now imagine looking down at the Earth from directly above the
North Pole. If your imaginary picture is good enough, you’re no doubt already
thrilled that we see what’s shown in Figure 16.22!

So the angle here is also π
2 . Summing these angles, we get a total of 3π

2 :
most definitely warning us that we’re going to need to be mighty careful about
what we think we know will happen on a sphere.
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Figure 16.22

They All Laughed at Christopher Columbus. . .

One of the most fundamental ideas in geometry on the plane is that of the
straight line. Given any two points in the plane, the straight line from one to
the other offers us the shortest distance – and given any two points, we can
always find such a straight line. But how about on the surface of a sphere?
If we want to find the shortest distance between any two points, we’re going
to need a line that curves with the sphere because there’s no such thing as a
straight line on the surface of a sphere!

As it turns out, there is a type of line that will always offer us the shortest
distance between two points on the surface of a sphere. This type of line is an
arc of something called a great circle – but what’s so great about them?

If we imagine the Earth to be a perfect sphere, then the equator is a great
circle – as are any of the circles that would pass through both the North and
South poles. Intuitively, a great circle is a circle which has the same radius as
the sphere it is drawn upon. More formally, a great circle is the intersection of
the sphere with a plane which passes through its centre, as shown in Figure
16.23.

Great circles have a wide range of uses in various geometric constructions,
and at university they’ll be a vital cornerstone in a whole host of proofs and
problems. They’re a prime example of how working with geometry on the sphere
requires you to go right “back to basics,” and develop a whole new intuition –
and what better way to hone such intuition than to try some exercises?

EXERCISES

16.3.1. What is the sum of the angles of an equilateral triangle on the
sphere?
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Figure 16.23

16.3.2. What is the (theoretical) minimum of the sum of the angles of a
triangle drawn on a sphere?

16.3.3. What is the (theoretical) maximum of the sum of the angles of a
triangle drawn on a sphere?

16.3.4. From our study of triangles, there is a way to find the sum of the
angles in a quadrilateral, pentagon, hexagon, . . . (any polygon) on a
sphere. What is it?

16.3.5. We can only use the transformation of rotation on the sphere if we
choose our axis of rotation carefully. What property must it have?

16.3.6. We can only use the transformation of reflection on the sphere if we
choose our axis of reflection carefully. What property must it have?

16.3.7. The radius of the Mars is 3000 km, to one significant figure. What
would the diameter of any great circle on the surface of Mars be
(assuming that Mars is a perfect sphere)?

16.3.8. The volume of a perfectly spherical modern art statue is 4
3πm3. The

statue’s owner wants to draw a line between the very top of the statue
and the very bottom of the statue. He doesn’t mind if the line twists
and turns, but he wants the line to be as short as possible. How long
should the line be?



238 16. Geometry

Where Now?

As we’ve seen, geometry at university is often more about proving things are
true than it is about getting a “toolbox” of new tricks. For this reason, lots of
people find geometry courses quite difficult. Having said that, there are plenty
of interesting things out there to prove: the cosine rule, Pythagoras’ theorem,
even the fact that the angles in a triangle always add up to π. Geometry is part
of the very foundations of mathematics, with people such as Euclid working
on it “back in the day,” and so it’s definitely something worth getting to grips
with because it turns up all over the place.

If you think back to the proof of “the angle subtended from a chord to the
centre of a circle is twice the angle subtended from that chord to anywhere on
the edge of the circle, on the same side as the centre,” we only explored one
of two possible cases. For our proof to be complete, we need to show that it’s
valid in the other case too. This follows by another rule that you’ll have no
doubt used many times before:

The angle subtended from a chord to the edge of a circle is the same
anywhere on the edge of the circle (so long as we choose the two points
of the edge on the same side of the chord).

Visually, we’re saying that in Figure 16.24 angles A and B are always equal.

Figure 16.24

Hopefully, you’ll see how we can use this fact to cover case 2 of our proof:
we know that we can prove case 1, and then using this fact we see that the
angle at the edge in either case is the same, so we get case 2 for free! If we want
to be really rigorous, we need to prove, “The angle subtended from a chord to
the edge of a circle is the same anywhere on the edge of the circle (so long as
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we choose the two points of the edge on the same side of the chord.)” We’ll
leave this one to you!

Modern Geometry with Applications (G. Jennings, Springer-Verlag, 1994)
covers a large amount of geometry. It proves some familiar things in a rigorous
way, and introduces lots of new, exciting ideas too.

If you enjoyed thinking about geometry on the sphere, try this one for size:

Imagine two different great circles drawn on the same sphere. What
can we say about where these great circles cross?

If you have a good mental picture, it becomes apparent that they’ll always have
to intersect twice, and the two points of intersection will also have a special
property. They’ll be directly opposite each other on the sphere (we call these
antipodal points on a sphere) and it’s impossible to find a pair of “parallel”
great circles on a sphere: any two distinct great circles will intersect twice!
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Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. Find coth 3, leaving your answer in terms of e.

2. Find x, given that coshx = 2.

3. Find x, given that tanhx = 1
3 .

4. Find d
dx (2 sinh(4x)).

5. Find d
dx (ln sinh(3x)).

6. Find d
dx (e2x sinhx).

7. Find d
dx (etanhx).

8. Find
∫

tanh2 x sech2x dx.

9. Find
∫

2 cosh(3x) dx.

10. Find
∫

sinh2(3x) dx.
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17.1 Your New Best Friends

For the majority of your mathematical career to date, you’ll have known the
ins and outs of the trigonometric functions. Through good times and bad, these
functions will have served you well over the years. There’s no replacement for
them, and you can’t do without them. But now it’s time to be adulterous.

Pronounce and Annunciate

The hyperbolic trigonometric functions have very strong similarities with the
standard trigonometric functions of sine, cosine, tangent, cosecant, . . . and so
on. Whereas the standard trigonometric functions are based on circles, hyper-
bolic trigonometric functions are based on hyperbolae (graphs with an equation
of the form x2

a2 − y2

b2 = 1). In order to write a standard trigonometric function in
explicit terms of x we need to use an infinite sum, but hyperbolic trigonometric
functions are a whole lot more friendly: these guys are simply written in terms
of ex and e−x.

When we’re writing about hyperbolic trigonometric functions we simply
write the standard corresponding trigonometric function with an additional h

on the end. For example, the hyperbolic form of sinx is sinh x and the hyper-
bolic form of cosx is cosh x. There are also standard pronunciations of these
new words, which are as follows:

Hyperbolic Function Phonetic Pronunciation
sinh “sinch” or “shine”
cosh “cosh”
tanh “tanch” or “than”

cosech “cosech”
sech “sech” or “sheck”
coth “coth”

e Talking

You can relax now: the wait is over. Here are the hyperbolic functions:

cosh x =
ex + e−x

2

sinhx =
ex − e−x

2
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Just like in standard trigonometry, we find tanhx by calculating sinh x
cosh x . This

means that:

tanh x =
sinhx

cosh x

=
ex−e−x

2
ex+e−x

2

=
ex − e−x

ex + e−x

Some people prefer the expression tanhx = e2x−1
e2x+1 , which is arrived at by mul-

tiplying both numerator and denominator by ex.
Also, just like in normal trigonometry, we see that:

cosechx =
1

sinhx
=

2
ex − e−x

sechx =
1

cosh x
=

2
ex + e−x

coth x =
1

tanh x
=

ex + e−x

ex − e−x
=

e2x + 1
e2x − 1

Let’s take a quick look at some basic questions to do with these new functions:
Find the value of cosh 3.

cosh 3 =
e3 + e−3

2

Now for something a little bit more demanding:
Find the value of x if sinhx = 1.

ex − e−x

2
= 1

ex − e−x = 2

ex − e−x − 2 = 0

e2x − 2ex − 1 = 0

In case you didn’t spot it, all that happened in the final step was a multiplica-
tion through by ex. The reason that we did this is because now the equation is
a quadratic equation in ex, which is very handy indeed. Let’s proceed:
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ex =
2 ±√

4 + 4
2

=
2 ± 2

√
2

2
= 1 ±

√
2

The negative root is not possible because ex is always positive, so we discard
it. Taking natural logarithms of both sides:

ln ex = ln(1 +
√

2)

x = ln(1 +
√

2)

Notice how we set ourselves up to be able to use the quadratic formula: this is
a trick that is common in this sort of question.

Graphs

As hyperbolic functions are all expressed in terms of ex and e−x, knowing what
the graphs of these functions look like should aid us in our new discoveries.
Figure 17.1 shows the basic graph of ex and e−x, and we’re going to use this
to help work out everything else.

Figure 17.1

Notice that for x < 0, ex < e−x and for x > 0, ex > e−x. This means that
ex − e−x will be negative for x < 0 and positive for x > 0, so when x = 0,
ex−e−x = 0. Using this information, we can formulate the graph of y = sinhx,
as shown in Figure 17.2.

If we think about the behaviour of the graphs, then it becomes apparent
that ex + e−x must be symmetrical about the y-axis, and therefore coshx will
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x

y y x

Figure 17.2

be. When x = 0, we see that ex +e−x = 2, and so coshx = 1. Using these facts,
we can draw the graph of coshx, as shown in Figure 17.3.

x

y y x

Figure 17.3

Using the fact that tanhx = sinh x
cosh x we can build up the picture of tanhx,

as shown in Figure 17.4. There’s also a more algebraic exploration of why the
curve looks like it does in the “Where Now?” section at the end of the chapter.

If you’re partial to a bit of curve sketching, you may like to try the graphs
of cosech x, sech x and cothx for yourself.
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Figure 17.4

EXERCISES

17.1.1. Find the value of sinh 5, giving your answer in terms of e.

17.1.2. Find the value of cosh 3
2 , giving your answer in terms of e.

17.1.3. Find the value of tanh 2, giving your answer in terms of e.

17.1.4. Find the value of coth
√

2, giving your answer in terms of e.

17.1.5. Find the value of x, if sinhx = 3.

17.1.6. Find the value of x, if coshx = 4.

17.1.7. Find the value of x, if tanhx = 1
2 .

17.1.8. Find the value of x, if cothx = 6.

17.2 Identities and Derivatives

Now that we’re well acquainted with the hyperbolic functions we can start
to look at some of the different ways in which we can manipulate them. Just
like the standard trigonometric functions, there are some useful identities that
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we can employ in order to aid solving problems. These identities are reason-
ably similar to the standard trigonometric identities, so they are quite easy to
remember but also quite easy to get confused!

The first identity that we’re going to look at is this:

cosh2 x − sinh2 x = 1

We can find a proof of this by expressing the left-hand side of the identity as
the difference of two squares, and proceeding as follows:

cosh2 x − sinh2 x = (cosh x + sinhx)(cosh x − sinhx)

=
(

ex + e−x

2
+

ex − e−x

2

)(
ex + e−x

2
− ex − e−x

2

)
= (ex)

(
e−x

)
= e0

= 1

From this identity we can immediately find another, simply by dividing through
by cosh2 x:

cosh2 x

cosh2 x
− sinh2 x

cosh2 x
=

1
cosh2 x

Simplifying this gives us the identity:

1 − tanh2 x = sech2x

We can get another identity by taking our original cosh2 x − sinh2 x = 1 and
instead dividing through by sinh2 x. This yields:

cosh2 x

sinh2 x
− sinh2 x

sinh2 x
=

1
sinh2 x

Simplifying this gives:

coth2 x − 1 = cosech2x

Questions to do with hyperbolic trigonometry often involve proving a particular
identity. Here’s a worked example:

Show that cosh x sinh y + cosh y sinhx = sinh(x + y).
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Taking the left-hand side:

LHS =
(

ex + e−x

2

)(
ey − e−y

2

)
+
(

ey + e−y

2

)(
ex − e−x

2

)
=

1
4
(exey + e−xey − exe−y − e−xe−y) +

1
4
(exey + exe−y − e−xey − e−xe−y)

=
1
4
(2exey − 2e−xe−y)

=
1
2
(ex+y − e−(x+y))

= sinh(x + y)

Just as you’ve probably seen in your work on standard trigonometry, if we let
x = y we can proceed to find another important identity from what we’ve just
done:

sinh(x + x) = cosh x sinhx + cosh x sinhx

sinh(2x) = 2 cosh x sinhx

Using similar logic to the process that we’ve just been through, we can derive
the identity:

cosh(x + y) = cosh x cosh y + sinhx sinh y

And from here we can also see that:

cosh(2x) = cosh2 x + sinh2 x

Finally, we can also use the fact that tanh(2x) = sinh(2x)
cosh(2x) to derive the final

identity of the section:

tanh(2x) =
2 tanhx

1 + tanh2 x

You may have noticed that the hyperbolic trigonometric identities look strik-
ingly similar to the standard trigonometric identities, and they are indeed linked
by something called Osborn’s rule, which you’ll find out more about at univer-
sity.

Differentiating

Differentiating hyperbolic functions isn’t too much of a struggle, thanks to the
fact that d

dx (ex) = ex and d
dx (e−x) = −e−x. By doing some careful differenti-

ating, we can quickly arrive at the following:
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d

dx
(sinhx) =

ex + e−x

2
= cosh x

d

dx
(cosh x) =

ex − e−x

2
= sinhx

These derivatives are quite common, so make sure that you know the results
from memory: when we differentiate sinh x we get cosh x, and vice versa. There
is no minus sign when differentiating coshx as there is with cos x, so make sure
that you don’t get that confused!

In differentiating tanhx, we’re going to need the quotient rule for differen-
tiation. Just in case you’ve forgotten it, this is:

d

dx

(u

v

)
=

v du
dx − u dv

dx

v2

Using this on tanhx works like this:

d

dx
(tanh x) =

d

dx

(
sinhx

cosh x

)
=

cosh2 x − sinh2 x

cosh2 x

=
1

cosh2 x

= sech2x

The trick in the second from last line came from the first identity that we
looked at: cosh2 x− sinh2 x = 1. If you didn’t spot that, go back and learn the
identities properly!

The last thing that we’re going to look at before the exercises requires the
use of the chain rule for differentiation. It’s not too taxing, so let’s launch
straight into the worked example:

Find the derivative of sinh(x2).
Hopefully you’ll be familiar with this sort of thing. The way to tackle it is to
use the chain rule. The result that’s required is simply:

d

dx
(sinh(x2)) = 2x cosh(x2)
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EXERCISES

17.2.1. Prove that cosh(x + y) = cosh x cosh y + sinhx sinh y

17.2.2. Show that tanh(2x) = 2 tanh x
1+tanh2 x

, using the expressions for sinh(2x)
and cosh(2x).

17.2.3. Differentiate each of the following with respect to x:

a) sinh(3x)

b) 2sechx

c) ex cosh x

d) tanh(x2)

e) xcosech(ln x)

f) ln(coshx)

g) esinh x

h) cothx sin x

i) ecosh xcosechx

17.3 Integration

After the marathon of identities and derivatives, we’re going to wind down the
chapter by looking at some integration. Looking back at what we’ve just done,
it should be clear that:

∫
cosh x dx = sinhx + c∫
sinhx dx = cosh x + c

When working with this sort of integration, remember that it’s important to
check that what you give as an answer would differentiate back to what you
started with. Mistakes are very easy to make in this sort of situation! Here’s a
couple of worked examples of integration:∫

sinh(3x)dx =
1
3

cosh(3x) + c
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∫
1
2

cosh
(x

4

)
dx = 2 sinh

(x

4

)
+ c

Just like when integrating standard trigonometric functions, we can sometimes
make life easier by using an identity before we start with the calculus. Here’s
an example:

Find
∫

sinh2 x dx

By rearranging the identity cosh2 x − sinh2 x = 1, we can see that cosh2 x =
1 + sinh2 x. Also, we already know that cosh(2x) = cosh2 x + sinh2 x. We can
combine these two identities to derive the fact that cosh(2x) = 1 + 2 sinh2 x,
which we can then rearrange to help us solve the problem:

∫
sinh2 x dx =

1
2

∫
(cosh(2x) − 1)dx

=
1
2

(
1
2

sinh(2x) − x

)
+ c

=
1
4

sinh(2x) − x

2
+ c

We use a similar trick for finding the integral of cosh2 x, using the identity
cosh(2x) = 2 cosh2 x − 1.

One final thing to keep an eye out for is what we like to call “integration by
eye”: sometimes it is quicker to try to find a function whose derivative is the
function that you’re trying to integrate. Here’s one final example to illustrate
this:

Find
∫

cosh2 x sinhx dx

Gut instinct may tell you to dive into an integration by parts, but there is a
much quicker way of solving this problem. It only takes a moment to realise
that d

dx (cosh3 x) = 3 cosh2 x sinhx, and what we require is simply one-third of
this. That means that the answer to our problem is simply 1

3 cosh3 x: a much
neater approach than getting lost in a sea of us and vs.

EXERCISES

17.3.1. Evaluate
∫

cosh(2x) dx.

17.3.2. Evaluate
∫

2 sinh(4x) dx.

17.3.3. Evaluate
∫

2ex cosh x dx.

17.3.4. Evaluate
∫

e−x(e2x + 1) tanhx dx.
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17.3.5. Evaluate
∫

9sech2(3x) dx.

17.3.6. Evaluate
∫

2 cosh2 x dx.

17.3.7. Evaluate
∫

sinh2 x cosh x dx.

17.3.8. Evaluate
∫

tanh(3x)sech(3x) dx.

17.3.9. Evaluate
∫

4 tanh3 x sech2x dx.

Where Now?

As I’m sure you’ll appreciate, learning what the sine, cosine and tangent “fam-
ily” are is only the first step towards using them. You’ll need some practice
in a wide range of situations before you become fully comfortable with the
hyperbolic trigonometric functions, but simply knowing of their existence and
roughly how to manipulate them will be a massive help for when it comes to
your first course in properly using them at university. Algebra and Geometry
(A. Beardon, Cambridge University Press, 2005) is a great place to look if
you’re hungry for more information on the hyperbolic trigonometric functions.

From looking at conic sections to solving awkward integrals, sinh, cosh and
tanh will be like old friends to you in no time. You’ll be encountering them in a
huge variety of situations in your degree; you’ll even be needing them when you
delve deeply into the integration of complex functions! There’s a lot of ground
to be covered but you’ll definitely get a lot of mileage out of knowing these
functions well.

Finally, here’s a more “algebraic” exploration of the tanhx curve: As
tanh x = e2x−1

e2x+1 , we can see that when x = 0 we have e2x − 1 = 0, and so
tanh x = 0 at this point. To get an idea of the shape of the graph of tanhx,
we’re going to need to look at the general behaviour. As x tends to −∞, e2x

tends to 0, and so tanhx will tend to −1. We can rearrange the formula for
tanh x one last time (by dividing top and bottom by e2x), to obtain the ex-
pression 1−e−2x

1+e−2x , and in this form it becomes clear that as x tends to ∞, e−2x

tends to 0, and so tanhx will tend to 1. Combining all of these facts together,
we arrive at precisely what we had in Figure 17.4.
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Motion and Curvature

Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. A particle of mass m sits on a plane that is inclined at an angle θ to the
horizontal. There is no frictional force between the particle and the plane,
and the particle is held in place by a constant force of k Newtons, which
is applied at an angle of θ to the plane. Find (and simplify) an expression
for k.

2. A box of mass 1 kg needs to be dragged up a hill, which is inclined at an
angle of 45◦ to the horizontal. In order to pull the box, a rope is attached at
an angle of 30◦ to the slope, and a constant force of 50 N is to be applied.
The coefficient of friction is 0.2. Find the instantaneous acceleration of the
box in the first moment that the force is applied.

3. A particle is attached to a string and swung in a horizontal circle of radius
3 m. The angular velocity of the particle is found to be 10 rads−1. What is
the acceleration of the particle, and in which direction is this acceleration?
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4. A particle is travelling along a horizontal circular path of radius 2 m with
a constant velocity of 8 ms−1. What is the acceleration of the particle?

5. A particle of mass 4 kg is attached to a string and swung in a horizontal
circle of radius 2 m. The angular velocity of the particle is found to be 1
rads−1. What force is the particle exerting on the string?

6. A bucket is filled with water, so that its mass is 10 kg, and then tied to a
rope which is 2 m long. The bucket is swung in a horizontal circle, using
the entire length of the rope, with a constant velocity of 3 ms−1. What is
the tension in the rope during this time?

7. Parameterise the curve y = 3x + 2.

8. Parameterise the curve y = sinx.

9. Find the length of the curve parameterised by C = {(t, 7t + 1)|t ∈ [0, 3]}.
10. By first parameterising the curve, find the length of the curve y = cosh x

between x = 0 and x = ln 10.

18.1 Loose Ends or New Beginnings?

This chapter might seem a little bit strange. We’re going to start out by taking a
look at some more complicated mechanics problems, and we’re going to finish by
looking at curves. If these two ideas seem totally unrelated to you, don’t despair.
Before university, “mechanics”-style problems and “pure”-style problems are
kept rather distant, but at degree level the two are much more integrated. What
a university mathematician would call “applied maths,” you would probably
consider to be pure; and what a university mathematician would call “pure
maths” you would probably consider to be insanity.

Sloping Away

If you’ve already studied a decent amount of mechanics, you may want to skip
this section (and perhaps the next section too, to get straight to the section on
curves). If not, then it’s time to recall what we did way back in the chapter on
mechanics – if you haven’t studied this chapter yet, it’s time to do so now. We
finished the chapter on a bit of a cliffhanger: We saw a little bit of motion in the
context of Newton’s second law, but then we only looked at stationary particles
on an inclined plane. Now it’s time to unite these concepts and examine some
moving particles on a plane.
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When the particle was stationary on the plane, we found the magnitude of
the frictional force by resolving the particle’s weight force into its components
parallel and perpendicular to the plane and then making an equality of the form
Fr = mg sin θ. Nothing too mindblowing there. But now consider conducting
the following experiment in real life. Take a flat piece of wood and place it on a
table. On the piece of wood, place a small item (let’s say a sandwich, because
as we write this we’re feeling rather hungry). Pick up one end of the piece of
wood, leaving the other end on the table, and raise this end of the piece of wood
so that you have created an inclined plane for the sandwich to sit on. Measure
the angle of the incline that you’ve created and work out how strong the force
of friction is. When you’ve done that, make the plane a little bit steeper and
repeat the process. You’ll find that the force of friction is a little bit stronger
now, because θ has increased a little bit and, in the region of 0-90 degrees,
increasing θ increases sin θ. Then do it again. And again and again and again
– you’ll find that the force of friction increases each time.

But then you’ll go a little bit too far: You’ll incline the plane a little more
than you did the previous time, and the sandwich will slip. You can’t work
out what the frictional force was in this case using the methods that we used
before, because all of them relied on the sandwich being stationary throughout.

As you give up and eat the sandwich, something bothers you. When you
made the plane steeper and steeper, the frictional force increased. So what was
the value of the frictional force? Did it vary?

Yes, it did. This poses us a problem: Given some apparatus, how can we
quantify the frictional force in the experiment? Clearly we can’t simply state
the magnitude of the force because that varies with θ (the angle of the slope).
Cunningly, there is a useful piece of information that we can extract. It is called
“the coefficient of friction” and is given the letter μ. The formula for finding μ

is this:

Fr = μR

That is, at the point of slipping, the coefficient of friction is equal to the fric-
tional force divided by the normal reaction. Notice the key phrase here: “at the
point of slipping.” To find the value of μ we need to incline the plane as steeply
as we can without having the sandwich slip, so that if we made the slope even
the tiniest bit steeper the sandwich would slide down it.

Now that we have this piece of information, we can see how it is useful to us.
We saw in the chapter on mechanics that the equation for the normal reaction
of the plane on the particle, R, is equal to mg cos θ. Substituting this into our
equation for μ yields the equation:

Fr = μmg cos θ
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At this point it becomes necessary to summon up Newton’s second law again.
You’ll recall that this is F = mdv

dt + v dm
dt , and in this situation we’re going

to assume that the mass of the particle doesn’t vary with time, so that we
can use the simplification F = ma (we explored this idea fully in Chapter
10). We look at which direction each force is acting in to determine whether it
should be positive or negative in our calculations. Here we’ll be trying to find
the acceleration of the particle down the slope, so we’re choosing our “positive
direction” to be “down the slope.”

The weight force of the particle acting down the slope is mg sin θ, and the
frictional force – which opposes motion – we now know to be μmg cos θ. Figure
18.1 is a diagram of this situation, with our forces on.

Figure 18.1

Putting all of this together with Newton’s second law in its F = ma form
gives us the single equation:

mg sin θ − μmg cos θ = ma

It’s really important that you’re confident about where all of these things came
from. The left-hand side is the force acting down the slope minus the force
acting up it, which we can group together and deal with just like they were a
single force, in order to equate the whole thing as being equal to ma. The only
thing left to do is to cancel the ms, leaving us with the final equation:

g sin θ − μg cos θ = a

This equation can be used to solve a whole host of problems, so here’s a worked
example:

A particle of mass 3 kg is at the point of slipping down a plane inclined
at 60◦ to the horizontal. Given that the coefficient of friction of the
system is 0.2, find the particle’s initial acceleration at the instant that
it is released from rest.
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To solve the problem, all that we need to do is to substitute into the equation
that was just derived. Here we go:

a = g sin θ − μg cos θ

=
√

3
2

g − 0.2
g

2

=

(√
3

2
− 1

10

)
g

=

(
5
√

3 − 1
10

)
g

Now that we’ve taken a look at motion, we are going to take a look at one final
type of question involving particles on inclined surfaces: problems involving
external forces.

Outsiders

All of the problems that we’ve looked at so far (in both this chapter and the
chapter on mechanics) involved a particle being left to its own devices on an
inclined plane. Nothing other than the particle’s weight was pulling it down
the plane, and nothing other than friction was opposing this motion. But what
happens when we have other forces in the system? How does that affect our
calculations?

Thankfully it doesn’t make too much difference. There are two key things
to remember:

• Resolve all forces (including external forces) so that they are expressed in
their components acting parallel and perpendicular to the plane.

• Check which direction friction is acting in: friction always opposes motion.

The second of these points might seem a little strange at first, but if we have
a system where there is strong external force acting up the plane, it’s very
possible that the motion of the particle will be up the slope and so friction
will then be acting in the direction down the slope: the opposite to what we’ve
been dealing with so far. Remember that this isn’t always going to be the case,
though: with a steep incline and a small external force acting up the plane, the
particle may still well move down the plane, meaning that the direction of the
frictional force will still be up it.

Take a look at Figure 18.2 to try to visualise exactly what’s going on. (All
forces are in Newtons.)
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Figure 18.2

You’ll see that a force of x Newtons is being applied to the particle on the
slope, and that this force is strong enough to mean that the frictional force
is acting down the slope. Hopefully it’s clear that to deal with any problem
involving an external force we’re going to need to do some resolving of forces,
so let’s have a think about that. Clearly the standard weight force, mg, will
be resolved in the same way as always: mg cos a will be the pull “into” the
plane, and mg sin a will be the force along the plane. When we resolve the new,
external force, however, the sine and the cosine actually come out the other way
around: this means that for an external force, x sin b is the force perpendicular
to the plane and x cos b is the force parallel to it. We could spend pages and
pages trying to describe this in words, but the only way that you’re really going
to get to grips with it is if you do the geometry yourself. It’s really not too scary:
have a play around. You know what the result should be now, so once you get
that, you know you’re on the right track.

There’s one last key thing to note before we head to a solution. Remember
that the formula for the coefficient of friction was Fr = μR. This is obviously
still true, but when we’re finding the value of R we need to remember that
R is only the force that the plane pushes on the particle with. In situations
involving an external force, this won’t simply be equal to mg sin a, because now
we need to include the fact that the external force is pulling the particle off of
the plane a little bit. We’ll hopefully clarify this concept a little more in the
next example.

Altogether, that’s been a lot of theory. Most of the ideas presented here
really aren’t as bad as they seem, and so hopefully a worked example will
be much better at guiding you through than ploughing through even more
“explaining.”

A particle of mass 2 kg is sitting on a plane inclined at 45◦ to the
horizontal. A string, making an angle of 30◦ to the plane, pulls on
the particle up the plane with a constant force of 20 Newtons. The
coefficient of friction of the whole system is 0.6. Find the acceleration
of the particle up the plane at the moment that it is released from rest.
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Just like with all of these problems, a good diagram is very helpful; take a
look at Figure 18.3 now! (All forces are in Newtons.)

Figure 18.3

First of all, let’s take a look at that point that we flagged up just before
the question. We need to find the value of R very carefully. Here’s the equation
that we have in this case:

R = 2g cos 45 − 20 sin 30

=
√

2g − 10

Now that we have calculated the correct value for R, we can proceed to find
the magnitude of the frictional force:

Fr = μR

= 0.6
(

2g√
2
− 10

)
=

1.2g√
2

− 6

Now that we have this calculated, we have three forces to use in the final
equation: the component of the weight force and the frictional force down the
plane, and the component of the external force up the plane. To combine them
we use F = ma just like before:
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ma = F

= Forces up the plane − Forces down the plane

2a = 20 cos 30 − 2g sin 45 −
(

1.2g√
2

− 6
)

= 10
√

3 + 6 − 3.2g√
2

a = 5
√

3 + 3 − 1.6g√
2

Make sure you’re happy with what happened in that last step: we take the
force up the plane (because this is the direction that the question requires the
answer in), and then subtract both the frictional force and the component of
the weight force, because they act down the plane. Take a good look at the
example to make sure you’re totally clear about all of the steps, and then tackle
these exercises.

EXERCISES

18.1.1. A particle of mass 2 kg is held at rest on a slope that is inclined at
an angle of 60◦ to the horizontal. The coefficient of friction is 0.4.
Find the acceleration of the particle at the instant that it is released.

18.1.2. A particle of mass 8 kg is held at rest on a slope that is inclined at
an angle of 45◦ to the horizontal. The coefficient of friction is 0.5.
Find the acceleration of the particle at the instant that it is released.

18.1.3. A particle of mass 1 kg is sitting on a slope that is inclined at an
angle of 30◦ to the horizontal. An external force of 100 N pulls the
particle up the plane, at an angle of 30◦ to the slope. The coefficient
of friction is 0.1. Is the direction of the frictional force in this system
up or down the plane?

18.1.4. A particle of mass 100 kg is sitting on a slope that is inclined at
an angle of 45◦ to the horizontal. An external force of 1 N pulls the
particle up the plane, at an angle of 30◦ to the slope. The coefficient
of friction is 0.6. Is the direction of the frictional force in this system
up or down the plane?

18.1.5. A particle of mass 10 kg is held at rest on a slope that is inclined
at an angle of 45◦ to the horizontal. An external force of 20 N acts
on the particle, pulling up the plane, at an angle of 30◦ to the slope.
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The coefficient of friction is 0.5. Find the instantaneous acceleration
of the particle at the moment that it is released from rest.

18.1.6. A particle of mass 10 kg sits on a plane which is inclined at an angle
of 30◦ to the horizontal, and there is no friction between the particle
and the plane. An external force acts on the particle, pulling up
the plane, at an angle of 30◦ to the slope. Given that the particle is
stationary on the slope, find the magnitude of the external force.

18.2 Circular Motion

When it comes to circular motion, most people fall into one of two distinct cat-
egories: they’re either very experienced and confident in the matter, or they’ve
never really worked with it at all before. If you’re confident about circular mo-
tion (and therefore about centripetal acceleration), please feel free to skip this
section and head straight for the exercises. If you’re not, then get ready for
some spinning.

Deriving the Tools

In order to get a good idea of what goes on in circular motion, we’re going to
look at deriving the equations that are used. For a mass travelling at a constant
speed, in a horizontal circle (vertical movement would involve gravity, and we
want to keep things simple!) of radius r, we can think about the motion just
like in Figure 18.4.

What the diagram is showing us is that after a small amount of time, Δt,
the particle travelling around the circle will have travelled a small distance
Δs, and therefore through a small angle, Δθ. Now, notice that what we’re
saying here isn’t entirely accurate with the diagram shown. In the diagram it
shows that the particle will move along a straight path in order to achieve its
distance of Δs. So how do we make this simplification acceptable? Hopefully
you’ll already be thinking it: We make the time interval so short that Δs is
infinitesimally small. This means that we can make the approximation with
confidence, and that our assertion is valid. Of course, when we are dealing with
infinitesimally small time intervals, we’re dealing with calculus. Remember also
that when we measure in radians, we have arc length = rθ, and when we’re
taking an infinitesimally small time interval, we can assume that the particle
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Figure 18.4

is indeed travelling along an arc, so here’s what we can state:

Δs = rΔθ

Δs

Δt
= r

Δθ

Δt

ds

dt
= r

dθ

dt

If you think back to the standard definitions in mechanics, you’ll recall that
ds
dt is equal to velocity, because here the s is a displacement. Alongside our
standard notion of velocity we also introduce the idea of angular velocity . Just
as standard velocity is the change in distance over the change in time, angular
velocity is the change in angle over the change in time. We use the letter omega,
ω, for this and hence:

ω =
dθ

dt

Combining all of these factors together, we get the useful expression:

v = rω

We can also derive a useful expression for acceleration in uniform circular mo-
tion, but this one requires that we take a little more care, because the arguments
are quite subtle. Make sure you keep up!
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From Geometry to Swingball

Firstly, consider Figure 18.5.

Figure 18.5

The diagram illustrates how, in a short time interval, our particle moves a
small distance around the circumference of its circle, “sweeping out” an angle
θ. Let’s consider the velocity vectors of the particle at the beginning and the
end of this short time interval. They look like Figure 18.6.

Figure 18.6

An important thing to note is that although the vectors point in slightly
different directions, they are of the same magnitude because we know that
the particle is travelling at a uniform speed (because here we’re dealing with
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uniform circular motion). Also, because the motion of the particle is always
tangential to the radius of the circle, we know that the velocity vectors must
each make a right angle with their respective radii.

Now it’s time to think right back to Chapter 5, where we learned how to
perform vector subtraction using a diagram. You see, we’re interested in finding
Δv, which is equal to v2 − v1. Hopefully you’ll recall that all we need to do is
to reverse the direction of the arrow for v1, and place it on the end of v2: the
solution vector will then be the single straight line from the start of v2 to the
end of the reversed v1, as shown in Figure 18.7.

Figure 18.7

You’ll now see why we made such a fuss about the velocities acting at right
angles to the radii: it allows us to identify angle θ in this diagram – and that’s
the same angle as the angle that the particle “swept out” during its motion!
Look at Figure 18.8 and follow this argument to see why!

• Recall that CD points in the direction of v1, and DA points in the direction
of v2.

• Consider triangle OAB. We know two of the angles, and so angle OB̂A must
be π

2 − θ, because angles in a triangle sum to π.

• Consider triangle BCD. We now know two of the angles, and so angle BD̂C

must be θ.

• Similarly, angle AD̂E must be θ.

In addition to this, we know that both v1 and v2 are equal in magnitude and
so we can name them both v. The triangle that we have is isosceles, so we can
label both of the other angles as α. This gives us Figure 18.9.
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Figure 18.8

Figure 18.9

We now use the sine rule (which we covered in Chapter 16, if you don’t
know it from memory) on the triangle to arrive at:

Δv

sin θ
=

v

sin α

Δv =
v sin θ

sin α

Remembering that we’re assuming the time interval to be infinitesimally small
(so that the particle travels around the edge of the circle, rather than along a
chord like our simplified diagram suggests), we can rearrange v = arc length

Δt to
arrive at:

Δt =
arc length

v
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We’re using radians, so the arc length is simply equal to rθ, hence we have:

Δt =
rθ

v

Finally, because a = Δv
Δt when our time interval is taken to be infinitesimally

small, we combine the above expressions to get:

a =

(
v sin θ
sin α

)(
rθ
v

)
=

v2 sin θ

rθ sin α

We’re almost done! We just need to think carefully about the behaviour of this
expression as θ becomes very small. Hopefully you’ll have met the small angle
approximation sin θ ≈ θ when θ ≈ 0, so we’ll be using that. Also, if we think
back to our isosceles triangle, if θ ≈ 0 then α ≈ π

2 , so sin α ≈ 1. Setting these
into our expression for a:

a =
v2θ

rθ · 1
=

v2

r

And there we have it: an expression for the acceleration. Remembering that we
also know v = rω, we can equivalently write:

a =
(rω)2

r

= rω2

Making the Right Connections

From these equations, we can again make links with Newton’s second law. If
we assume that in travelling around a horizontal circular path a particle does
not lose any mass, its mass is then not a function of time. Then, again using
the reasoning in Chapter 10, we use F = ma to derive the two equations:

F =
mv2

r

F = mrω2

Something that might surprise you about all of this is the fact that acceleration
must act towards the centre of the circle. If you hold a ball on a string and
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swing it in a circular path, you might think that it was accelerating radially
outwards from the centre, because you feel a “pull” in the string when you
swing the ball around – but what you’re actually feeling is the tension force in
the string that’s causing the ball to move in a circle in the first place.

All that remains for us to look at is a worked example. From there, the
spotlight is all yours.

A ball of mass 1 kg is tied to a string of length 0.5 m and then swung
around in a horizontal circle at 3 ms−1. Find ω, a and the tension in
the string.

Firstly, let’s find ω. Rearranging v = rω, we see that ω = v
r .

ω =
v

r
=

3
0.5

= 6 rads s−1

Now let’s look at the acceleration. This one’s just a job for the formula:

a =
v2

r
=

32

0.5
= 18 ms−2

Finally, we use the formula that has Newton’s Second Law built in to find the
tension:

F =
mv2

r
=

1 · 32

0.5
= 18 N

EXERCISES

18.2.1. When a particle is swung in a horizontal circle, in which direction is
it accelerating?

18.2.2. If a particle is undergoing circular motion around a horizontal cir-
cle of radius 5 m, and its angular velocity is π rads−1, what is its
velocity?

18.2.3. A particle is travelling at a constant velocity of 4 ms−1 around a
horizontal circle of radius 8 m. What is acceleration of the particle?

18.2.4. A particle travelling in a horizontal circle of radius 5 m is measured
to have an angular velocity of 3 rads−1. What is the acceleration of
the particle?
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18.2.5. A particle of mass 2 kg is attached to a string and swung in a hori-
zontal circle of radius 2 m, with a constant velocity of 6 ms−1. What
is the tension in the string?

18.2.6. A particle of mass 5 kg is attached to a string and swung in a hor-
izontal circle of radius 1 m, with a constant angular velocity of 2
rads−1. What is the tension in the string?

18.3 Curves

As promised in the introduction to the chapter, we’re now going to look at
some curves. We’ll start by exploring a process called the parameterisation of
curves.

One Line, Many Forms

For the majority of your mathematical career, you’ll have been expressing lines
in the form y = mx + c. The concept of parameterising a curve is all about
expressing the curve in terms of some parameter which varies between two
specified limits (which may be ±∞).

To help us determine the parameterisation of a straight line, we use vectors.
For the vector equation of a straight line, we need to know both a point on the
line, r0, and a direction vector, d. This way, by adding or subtracting multiples
of the direction vector from the specified point, we will move along the line
that we are defining. This means that the line has been uniquely determined,
and hence the vector equation of a straight line (for all real values of t) is:

r(t) = r0 + td

From here, finding the parameterisation of the curve is not too much extra work.
We need to split the original position vector into its x and y components, so
that r0 = (x0, y0), and then to also do the same to the direction vector, so that
d = (dx, dy). To find the parameterisation of the curve, all we do is combine
these two facts, and end up with:

L = {(x0 + tdx, yo + tdy)|t ∈ R}
This is the parameterisation of the line. If you’re unsure about any of the
notation in this, we covered it in Chapter 11 – it’s probably wise to go and
revise it now if you’re struggling.
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Round to Circles

To find the parameterisation of a circle of radius r and centre (m,n), we follow
a similar sort of logic: We find an expression in a parameter so as to unam-
biguously describe the shape that we require. Try to follow the steps in this
proof:

• The Cartesian equation for the circle is (x − m)2 + (y − n)2 = r2.

• Dividing through by r2 yields (x−m)2

r2 + (y−n)2

r2 = 1.

• Using the identity sin2 θ+cos2 θ = 1, we can set x−m
r = cos t and y−n

r = sin t.

• Rearranging each of these, we arrive at x = m + r cos t and y = n + r sin t.

At this stage, you should be able to spot that the parameterisation of the circle
is:

C = {(m + r cos t, n + r sin t)|t ∈ [0, 2π)}
Hopefully, everything there will be clear to you. The strange brackets around
the 0 and 2π are just there to say to start at 0 and finish just before 2π (because
the point where t = 2π would be mapped to the same point as t = 0).

Why Do It?

Parameterisation has many uses. In your degree, you’ll learn loads of them in
the first year. Here, we’re going to look at just one of them: finding the length
of a curve.

If we think about parameterisation visually, what we’re actually doing is
mapping a part of the real line to a curve in a space. The endpoints of the real
line that we deal with are the endpoints of the domain of the parameter, and
the “curve in the space” is the curve that we have parameterised. Figure 18.10
is a standard visual explanation of the idea, but if you’re not too sure what the
diagram is saying (but you are otherwise happy with parameterisation), don’t
worry about it. Some people find the diagram helpful, but don’t let it confuse
you if you don’t.

Anyway, as promised, we’re going to take a look at a use for parameteri-
sation. To find the length of a straight line is easy, but to find the length of a
curve that is not straight is actually quite difficult when you think about it.
How do you measure it? Make a model using string, and straighten the string
out to measure it? Hardly accurate. We can, in fact, use the following formula:
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Figure 18.10

Length of curve =
∫ b

a

∣∣∣∣∣∣∣∣drdt

∣∣∣∣∣∣∣∣ dt

What this formula is doing is looking at the parameterisation of the curve, and
seeing how far “along” the end is from the start, as the parameter moves from
its lower bound to its upper bound. Note that the r there is a vector. Here’s
an example of the formula in action:

Find the length of the line parameterised by r(t) = (2 + 3t, 3 + 4t), as
t varies between 3 and 5.

Firstly, we differentiate r(t). If you’ve never differentiated a vector with respect
to a scalar before, don’t worry. You simply differentiate each of the components
individually. This gives us:

dr
dt

= (3, 4)

Therefore, finding the norm of this vector (head on over to the chapter on
vectors if you’re not sure what this means!) is simply a case of equating:
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∣∣∣∣∣∣∣∣drdt

∣∣∣∣∣∣∣∣ =
√

32 + 42

=
√

25

= 5

This means that all we have to do to find the length of the curve is to solve:∫ 5

3

5dt

Let’s do that now, and then it’s time for the final set of exercises in this chapter:

Length of curve =
∫ 5

3

5dt

= [5t]53
= 25 − 15

= 10

EXERCISES

18.3.1. Parameterise the curve y = x.

18.3.2. Parameterise the curve y = x2.

18.3.3. Parameterise the circle of radius 2 that is centred on (3, 3).

18.3.4. Parameterise the semicircle that starts at (4, 0), passes through (2, 2)
and ends at (0, 0).

18.3.5. Consider the curve C = {(5t + 8, 12t)|t ∈ [0, 4]}. What is the length
of C?

18.3.6. Consider the curve C =
{
(8t2, 6t2 + 7)|t ∈ [1, 3]

}
. What is the length

of C?

18.3.7. What integral would need to be solved to find the length of the curve
y = x3 between x = 0 and x = 5?

18.3.8. What integral would need to be solved to find the length of the curve
y = 2x2 between y = 0 and y = 18?
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Where Now?

This chapter is all about new beginnings. In it, you’ll have developed your
skills learned in the mechanics chapter, so that you’re now able to tackle more
complicated problems. As ever, we can make the situations that we’re modelling
more and more complicated, hence making the maths harder and harder.

The work on circular motion really is only an introduction to the topic –
along with the idea that many people find surprising: that the acceleration is
directed towards the centre of the circle. The questions that were tackled in this
chapter are just the tip of the iceberg: how about considering vertical circles,
where we have to work against gravity on the way up, but then with it on
the way down? Or swinging a particle that is attached to an elasticated rope?
Now that the basic equations are there, it’s just a case of making a correct
mathematical model of the more complex situations before we can go about
solving problems like these.

Parameterisation is an absolutely fundamental skill in the first year of a
maths degree. You can use the idea of parameterisation on 3-dimensional sur-
faces as well as curves, and from there you can calculate lots more interesting
things about 3-dimensional shapes. Parameterisation is definitely something
that you’ll be seeing a lot of.

This brings us back to the point on which we started the chapter: Why
did we include the seemingly “pure” idea of parameterising a curve into a
chapter based on applied mathematics? Imagine we wanted to find the work
done (which is equal to the force exerted times the distance) in pushing a box
along a curvy path: We use the parameterisation to calculate the length of
the curve, just like we explored at the end of the chapter. When we have a
parameterisation for our curve, we can also calculate various properties like its
curvature (intuitively, how much the curve bends), which are often vital steps
in mechanics problems.

Although written primarily for physicists, University Physics, 11th Ed. (H.
Young and R. Freedman, Pearson, 2004) is an excellent text for exploring appli-
cations of the kind of mathematics that we’ve seen here. It’s absolutely jumbo
and has plenty of stuff other than mechanics, but it has some great derivations
of the equations we’ve been using, and goes far beyond the scope of the mate-
rial in this chapter. It’s also an excellent source of examples if you’re keen to
try some more!
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Sequences

Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. Draw the graph of the sequence an = 1, 3, 5, 7, 9, . . ..

2. Draw the graph of the sequence an = n
2 .

3. Is the sequence an = 3n + (−1)n monotonic?

4. Does the sequence an = 1, 2, 3, 4︸ ︷︷ ︸, 2, 3, 4, 5︸ ︷︷ ︸, 3, 4, 5, 6︸ ︷︷ ︸, . . . tend to ∞? (The

braces are only there to help show how the sequence behaves)

5. Does the sequence an = (−1)nn tend to ∞?

6. Does the sequence an = 2 − 1
n tend to 0?

7. Does the sequence an = (−1)n

5n tend to 0?

8. Does the sequence an = 3
10n tend to 0, ∞ or neither?

9. Does the sequence an = (−n)n tend to 0, ∞ or neither?

10. Does the sequence an =
√

n tend to 0, ∞ or neither?
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19.1 (Re)Starting Afresh

At university, one of the important things that you’ll do is go right “back to
basics,” and rigorously prove all of the tools that you’ve been using for years.
For example, differentiating is an important part of pre-degree work, but being
able to do it is a far cry from actually understanding what is going on. This
sort of investigation, called “analysis,” will be a key part of your degree. Your
university may not teach analysis in the first year, as some are opting to leave
this difficult topic to second years, but still “welcome” their new students with
the very basis of analysis: sequences.

What Is a Sequence?

A sequence is simply an ordered list of numbers. The ordering is crucial: It
is essential that we know which number is in which place in the sequence.
Notice too that the definition makes it apparent that a sequence is discrete
(we encountered this word when working with inequalities – have a quick recap
if you need to). When we plot a sequence on a graph, this means that we
get a collection of points and not a continuous line. So the sequence (an) =
1, 2, 3, 4, . . . (which can also be written an = n) looks like the diagram shown
in Figure 19.1.

Figure 19.1 an = n
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Bigger, Smaller or the Same Again?

In our study of sequences, it is helpful to be able to identify different properties
that we observe. In analysis, all the sequences that are of use to us are infinite
– they start with a first term, a1, but they go on forever. This means that when
we identify the following trends, we need them to be true for all values in the
sequence. In mathematics, we write “for all” so many times that we give it its
own symbol: ∀. From now on, when we want to say “for all,” we will use the ∀
symbol instead.

Here are the properties that a sequence may have when we look if it is
getting larger or smaller:

A sequence is:

• Increasing if ∀ n, an ≤ an+1.

• Strictly Increasing if ∀ n, an < an+1.

• Decreasing if ∀ n, an ≥ an+1.

• Strictly Decreasing if ∀ n, an > an+1.

Notice the crucial ∀ sign. We need our property to be true everywhere in the
sequence, so it is quite possible that a given sequence will have none of these
properties. Also note that by our definitions it is possible for a sequence to be
BOTH increasing and decreasing at the same time. For example, the sequence
(an) = 3, 3, 3, 3, . . . has the property an ≤ an+1 and the property an ≥ an+1,
so although the sequence is neither strictly increasing nor strictly decreasing,
it is both increasing and decreasing. Did you spot that if a sequence is strictly
increasing then it is also increasing? And that if a sequence is strictly decreasing
then it is also decreasing?

We have another set of labels to put on sequences, and this time every
sequence has either one or the other of these properties. That is, every sequence
is either:

• Monotonic if it is increasing or decreasing or both.

• Non-monotonic if it is neither increasing nor decreasing.

Before we go into the exercises, have one last check that you’re up to speed
with these definitions, especially in noting that being monotonic does not
look at whether a sequence is strictly increasing or strictly decreasing: here,
simply increasing or decreasing will do. So many students spend days puzzling
over their analysis notes because they never understood these fundamental
definitions. Getting them under your belt before you start the course is most
definitely time well spent.
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EXERCISES

19.1.1. Draw the graph of the sequence (an) = 1, 2, 1, 2, 1, 2, . . ..

19.1.2. Draw the graph of the sequence (an) = 2, 4, 6, 8, . . ..

19.1.3. Draw the graph of the sequence (an)) = (4 − n).

19.1.4. Draw the graph of the sequence (an) = (sinn).

19.1.5. Say which of the following properties each of these sequences have:

• Increasing

• Strictly increasing

• Decreasing

• Strictly decreasing

• Monotonic

• Non-monotonic

a) (an) = (n)

b) (an) = 10, 10, 9, 9, 8, 8, 7, 7, 6, 6, . . .

c) (an) = ((−1)n)

d) (an) = (sinn)

19.2 To Infinity (Not Beyond)

This concept must be the most efficient “fun-killing” tool at an analysis lec-
turer’s disposal. Over the years, the number of students missing out on partying
with their new friends because they had to sit in their rooms, battling it out
with this definition, must be in the millions. If there is just one thing that you
learn properly from this book before you start your degree, let it be this.

When Sequences Strike Back

Here it is. Like all the nastiest things, it looks so deceptively simple:

A sequence tends to infinity if, after a certain point, its terms are always
larger than any number we choose.
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Read it a few times and have a think. Cancel all your plans if you need to;
we’re going to conquer this fiend if it kills us. You see, our “instinctive” notion
of what it means to tend to infinity is nowhere near good enough to guide us
any more. Look at these two nasty facts, for example:

• Many increasing sequences do not tend to infinity.

• A sequence that tends to infinity doesn’t need to be increasing.

Think about why each of these is true, and if you’re not sure, review the defin-
ition of “increasing” from the previous section. Here’s an example to illustrate
each:

• (an) =
(−1

n

)
. This is definitely an increasing sequence (generate some terms

if you don’t believe it!), and yet it is never greater than 0, so it can’t tend to
infinity.

• The sequence (an) =
(

n
2 + (−1)n

)
tends to infinity, but it is not increasing

(write out some of its terms if you need to convince yourself of this. The
sequence isn’t monotonic).

Round 2

Now that we’ve seen some of the problems this nasty definition causes us, let’s
start to take some steps towards understanding it. For many students, the “Eu-
reka!” moment of suddenly understanding comes from a graphical approach, so
we’ll try that.

Let’s look at that definition again:

A sequence tends to infinity if, after a certain point, its terms are always
larger than any number we choose.

Now, to make things easier to visualise, let’s deal with “larger than any number
we choose” first.

Let’s work through the example of (an) = (n). We start by picking any
number: let’s choose 5. For our sequence to have any hope of tending to infinity,
it must get “larger than any number we choose.” Will the sequence (an) = (n)
get larger than 5? Yes: at n = 6, we have what we need. We can verify this
property graphically by drawing a horizontal line at the number we “choose,”
and checking that our sequence gets above it, as shown in Figure 19.2.

Now to verify the more difficult part – that after a certain point, its terms
are always larger than this. In our sequence (an) = (n), this is definitely true.
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Figure 19.2 (an) = (n)

But consider the sequence

(an) =
{

0, n even
n, n odd

Figure 19.3 an = 0 for even n, and n for odd n

Figure 19.3 shows what happens if we “choose” 5: Our sequence does get
above 5, but then it goes back below it. Our definition requires that there be a
point after which the terms are always above our chosen number. This won’t
ever happen for this sequence if we “choose” 5. So we are forced to conclude
that our sequence does not tend to infinity. Let’s take a look at one more
example:
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Does the sequence (an) = 1, 2, 3︸ ︷︷ ︸, 2, 3, 4︸ ︷︷ ︸, 3, 4, 5︸ ︷︷ ︸, 4, 5, 6︸ ︷︷ ︸, . . . tend to infin-

ity? (The braces are only there to help show how the sequence behaves.)

Let’s start by taking a look at a graph of the sequence, as shown in Figure 19.4.

Figure 19.4 (an) = 1, 2, 3, 2, 3, 4, 3, 4, 5, . . .

Look carefully at what happens. At n = 12, an = 6, so we’re above our 5.
But at n = 13, an = 5, so we’re no longer above 5. But wait! At n = 14, we’re
back above 5, and after this point we never go back to the line again (we’re
always above it). So our sequence does meet the criteria when we choose our
number to be 5.

The final thing to note is the part of the definition that says “any number
we choose.” Above, we saw that it works when we chose 5, but would it work
for a larger number? In that example, the answer is yes! If we choose 10, 100,
500000,. . . , we could always find a point in our sequence after which all the
terms are greater than any number we choose. This means that our sequence
does indeed tend to infinity.

It’s important to check this “larger than any number we choose” property,
and not just assume that a sequence tends to infinity because we find some
number for which it works. Look back at the sequence

(an) =
{

0, n even
n, n odd

Now imagine that we had chosen −1 as our “any number.” Certainly all the
terms in our sequence are greater than this, so we may be tempted to stop
and conclude “tends to infinity.” If we choose any positive number as our “any
number” instead, we quickly see that this is not the case!
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So, the moral of the story, and the final piece of advice before you’re out
there on your own, is this:

• If you choose a number and there is not a point after which every term of
the sequence is greater than your number, you can stop and conclude “does
not tend to infinity.”

• If you choose a number and there is a point after which every term of the
sequence is greater than your number, you’re not done yet. You need to
check that this holds whatever number you choose, not just this specific one
i.e. ∀ numbers chosen.

So there you have it. A guide to the nastiest concept in sequences. This section
may take a few reads to fully understand, but it’ll definitely be worth it in the
long run.

EXERCISES

19.2.1. Will the sequence (an) = (2n) ever get larger than 12? What, if
anything, can we conclude from this fact alone?

19.2.2. Will the sequence (an) = (−n) ever get larger than 7? What, if
anything, can we conclude from this fact alone?

19.2.3. Is there a point after which every term of the sequence (an) =
(
n2
)

is greater than 42? What, if anything, can we conclude from this fact
alone?

19.2.4. Is there a point after which every term of the sequence (an) =
((−2)n) is greater than 20? What, if anything, can we conclude from
this fact alone?

19.2.5. Does the sequence (an) =
(
n2 + n

)
tend to ∞?

19.2.6. Does the sequence (an) = (n + (−1)n) tend to ∞?

19.2.7. Does the sequence (an) =
(
100 − 1

n

)
tend to ∞?

19.2.8. Does the sequence (an) =
{

2n, n odd
n, n even

tend to ∞?
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19.3 Nothing at All

After grappling with the “tends to ∞” definition, you hopefully have a good
feeling for what it means and what it actually requires. Now that we have it
under our belts, we can quickly change a few things round and get another
concept mastered: what it means for a sequence to tend to 0.

Crossing the Line

Let’s look at some sequences and try to “discover” a definition for tending to 0.
The first thing we’ll examine is the sequence (an) =

(
1
n

)
. By drawing a graph,

or perhaps by “gut instinct,” it seems logical to say that (an) =
(

1
n

)
tends to 0.

So let’s begin our definition by looking at just the behaviour of this sequence:
We might guess that the requirement is “a sequence tends to 0 if, after a certain
point, its terms are always smaller than any number we choose.” But wait –
there’s a problem. That’s wrong!

When we were looking at sequences tending to ∞, we wanted the terms
to get really large. But when we look at sequences tending to 0, we can’t just
look for terms getting less and less, because if we’re not careful they’ll go way
beyond 0 and down into very negative numbers – perhaps even to −∞! This is
clearly not the same as tending to 0.

So how do we deal with this? Let’s look now at the sequence (an) =
(−1

n

)
.

This too tends to 0, but as we go along the terms are actually getting larger!
It’s time for our good old friend, the modulus sign, to step up. The modulus

of terms in (an) =
(

1
n

)
is simply 1

n , so this sequence is unchanged. But the
modulus of terms in (an) =

(−1
n

)
is 1

n , which we already know tends to 0. So
by taking the modulus (often called the “absolute value”) of the terms in our
sequence, we overcome the problem and arrive at the correct definition:

A sequence tends to 0 if, after a certain point, the absolute value of its
terms are always smaller than any positive number we choose.

Note now that we’re restricted to choosing positive numbers, because if we chose
−1, say, no sequence could ever possibly satisfy our requirements, because of
the effect of taking absolute values.

Beyond this, all the concepts work the same way as they did with sequences
tending to ∞. Here’s a few examples, and then a final set of exercises:

Does the sequence (an) = ((−1)n) tend to 0?

If we take the absolute values, we get the sequence |an| = 1, 1, 1, 1, . . .. If we
choose the positive number 1

2 , we can instantly see that our sequence does not
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ever take a value below 1
2 , so cannot possibly tend to 0.

Does the sequence (an) =
(

(−1)n

n

)
tend to 0?

If we take absolute values, we get |an| = 1, 1
2 , 1

3 , 1
4 , . . . (i.e., the sequence

(
1
n

)
).

For any positive number we choose, we can always find a point after which every
term in this sequence is less than our chosen number: hence (an) =

(
(−1)n

n

)
does indeed tend to 0.

You’re going to need the concept of sequences tending to 0 in order to work
with series in the next chapter, so learn it well!

EXERCISES

19.3.1. Will the sequence (an) = (n) ever take values less than 7? What, if
anything, can we conclude from this fact alone?

19.3.2. Will the sequence (an) = (3n) ever take values less than 2? What, if
anything, can we conclude from this fact alone?

19.3.3. Is there a point after which every term of the sequence (an) = (5−n)
is less than 3? What, if anything, can we conclude from this fact
alone?

19.3.4. Is there a point after which the absolute value of every term of the
sequence (an) = ((−3)n) is less than 5? What, if anything, can we
conclude from this fact alone?

19.3.5. Does the sequence (an) =
(

3
n

)
tend to 0?

19.3.6. Does the sequence (an) = (10 − n) tend to 0?

19.3.7. Does the sequence (an) =
{

n, n odd
0, n even

tend to 0?

19.3.8. Does the sequence (an) =
{

1
n , n odd
0, n even

tend to 0?

Where Now?

The answer to this question is simply too enormous to write here. From looking
at the terms of sequences, we can look at their sums (these are called series,
and are covered in the next chapter). We can also look at the behaviour of
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functions, which are like sequences “with the dots joined up.” From there, we
can look at differentiation, integration, power series. . . . This well and truly is
the tip of the analysis iceberg.

This sort of mathematics will almost certainly be new to you, and many
students find getting their heads around analysis very difficult indeed. You’ll
be in a much stronger position early in your degree if you find some time to
look over a textbook on analysis: we’d recommend A Concise Approach to
Mathematical Analysis (M. Robdera, Springer-Verlag, 2003), as it starts right
at the beginning. You’ll find clear explanations and a good set of exercises to
whet your appetite for analysis!

If you’ve enjoyed learning about logical language in the previous chapters,
you might like to learn the formal definitions of “tending to infinity” and
“tending to 0.” These definitions are more precise than the definitions that were
given in the chapter (in words), but as a result they look a little scary too! We
introduced the “for all” symbol, ∀, in this chapter. The only new thing to learn
is the symbol ∃, which means “there exists.” You’ll need to be comfortable
with the language of sets to be able to understand these definitions properly,
so even if you only take the time to get to grips them, without remembering
them, you’ll be setting yourself up well for your analysis studies at university.

In words, our definition for “tends to infinity” was:

A sequence tends to infinity if, after a certain point, its terms are always
larger than any number we choose.

Here’s the definition in symbols:

an → ∞ if ∀ ε > 0, ∃ N ∈ N such that ∀ n ≥ N , an > ε.

And we stated “tends to zero” as:

A sequence tends to 0 if, after a certain point, the absolute value of its
terms are always smaller than any positive number we choose.

Here’s the definition in symbols:

an → 0 if ∀ ε > 0, ∃ N ∈ N such that ∀ n ≥ N , |an| < ε.
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Test Yourself

If you think you are already comfortable with this material, try these questions
first and mark them using the answers at the back of the book. If you get them
all right, you’re probably ready to move straight on to the next chapter. If some
look tricky, study the chapter first and then come back to these when you’re
ready.

1. What is the sum of the first n terms of the sequence (an) = (2n)?

2. Consider (an) =
{

n + 2, n odd
1 − n, n even

. Is it possible to find the infinite sum

of this sequence?

3. Find the infinite sum of the sequence (an) =
{

4
n , n odd
4

1−n , n even
.

4. What property does every sequence with a finite value for its infinite sum
have?

5. How do we prove that the harmonic sequence does not have a finite value
for its infinite sum?

6. Use a geometric (i.e., “picture-based”) argument to prove that the sequence
(an) =

(
1
3n

)
has a finite value for its infinite sum.

7. Does the sequence (an) =
(

7
n

)
have a finite value for its infinite sum?
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8. Does the sequence (an) =
(

7
2n

)
have a finite value for its infinite sum?

9. Use the comparison test, carefully stating your comparison, to show that
(an) =

(
0.2
2n

)
has a finite value for its infinite sum.

10. Use the comparison test, carefully stating your comparison, to show that
(an) =

(
0.3
n

)
does not have a finite value for its infinite sum.

20.1 Various Series

Hopefully you’re up to speed on sequences, which was the topic that we covered
in the previous chapter. If you’re not, then it’s going to be essential for this
chapter, and so it’s time to turn to that now. If you feel happy with sequences,
then we can take the next step forward: series.

Work on series depends so heavily on work on sequences because a series
is simply the sum of terms in a sequence. This can be in one of two forms: We
can look at finitely many terms or infinitely many terms. For many sequences,
finding the sum of finitely many terms is the best that we can do. For example,
if you’ve already studied the chapter on formal logic, you’ll be well aware that
the sum of the first n terms of the sequence (an) = (n) is simply n

2 (n + 1) (in
that chapter, we proved this by induction). Trying to find the sum of infinitely
many terms in this series is hopeless: The more terms that we add on, the
larger the number gets and the faster that it gets larger! Even the sequence
(an) = (1) cannot be infinitely summed: the sum of the first n terms is clearly
n, but summing infinitely many terms will never yield a finite answer.

So, if even a simple sequence such as (an) = (1) proves impossible to infi-
nitely sum, are there any sequences out there that we can find the infinite sum
of? Well, it may be a boring one, but let’s consider the sequence (an) = (0).
The sum of the first n terms is 0, and we add on 0 at each step. Bingo! As
boring as it might be, the infinite sum of the sequence (an) = (0) is 0.

Now we’ve seen one sequence whose infinite sum is finite, the logical ques-
tion to ask is “are there others out there?” Yes, there are plenty of them (infi-
nitely many, in fact, but don’t think about why this is true until after you’ve
studied the chapter!). The aim of this chapter is to look at some of the different
kinds of sequences out there whose infinite sum is finite.
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Cancelled

The first type of series that we’re going to take a look at is one where many
of the terms “cancel each other out” – that is, there is a negative term for
many of the positive ones (or vice versa, if you prefer). We can “pair up” lots
of the terms and know that the sum of these “cancelling pairs” is simply 0.
That might not be too clear in words, so let’s take a look at an example:

Consider the sequence (an) =
{

n, n odd
1 − n, n even

. Is it possible to find

the infinite sum of this sequence?

Now, it might not be too obvious what’s going on here at first, so let’s generate
some terms in that sequence to see what’s happening:

(an) = 1,−1, 3,−3, 5,−5, . . .

Look what happens if we were to sum up these terms: the sum of the first pair
of terms is 0, the sum of the second pair of terms is 0, the sum of the the third
pair of terms is 0. . . Sense a pattern here? So can we use this to find the infinite
sum?

Actually, as it turns out, not quite. You see, the problem is that we’ll get a
different answer to our sum depending on whether we sum an odd or an even
number of terms. The sum of the first n terms is certainly 0 for even values of
n, but the sum of the first n terms is n for odd values of n. This means that,
annoyingly, we can’t find the infinite sum of this sequence – but we’re certainly
on the right track to finding some sequences for which we can.

Imagine that we had a “cancelling” sequence like the one in the last example,
but where the terms in the sequence tended to 0. Let’s take a look at an
example:

Find the infinite sum of the sequence (an) =
{

1
n , n odd
1

1−n , n even

Again, let’s start by generating some terms in this sequence.

(an) = 1,−1,
1
3
,−1

3
,
1
5
,−1

5
,
1
7
,−1

7
, . . .

Look what’s happening: Just like before, the terms are cancelling in pairs. But
as the sequence progresses, the absolute value of the terms is decreasing, and
the sequence is tending to 0. As before, the sum of the first n terms is 0 for
even values of n, but now when we find the infinite sum of the sequence, we
know that even if this did involve an odd number of terms, the sum would still
be 0 because the sequence tends to 0.
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There we have it: we’ve found another sequence that has a finite answer for
its infinite sum. But in doing so, we’ve actually discovered a very important
property of infinite series:

For a sequence to have a finite sum for infinitely many terms, the
sequence must tend to 0.

Notice which way around our statement is working (this is a great one for
“implies” arrows if you’ve studied formal logic!) – we’re saying that if a sequence
has a finite value for its infinite sum, then the sequence must tend to 0. We are
not saying that if a sequence tends to 0 then it must have a finite value for its
infinite sum – we’ll see a counterexample in the next section. Remember our
sequence (an) = (0)? We saw that the infinite sum of this sequence was finite,
and it might seem that a sequence that goes 0, 0, 0, 0, 0 . . . doesn’t really tend
to 0. Strangely enough, if you test that sequence with the definition of “tends
to 0” from the previous chapter, this sequence does actually tend to 0.

If you’re happy with everything that’s gone on so far, it’s time for some
exercises. If you’re not (and it’s unlikely that you will be after just one read
through), then go back for a recap before trying out the questions.

EXERCISES

20.1.1. What is the sum of the first n terms of the sequence (an) =
(
n2
)
?

20.1.2. What is the sum of the first n terms of the sequence (an) = (2n−1)?

20.1.3. Is it possible to find the infinite sum of either of the two sequences
above?

20.1.4. Consider (an) =
{

n + 1, n odd
−n, n even

. Is it possible to find the infinite

sum of this sequence?

20.1.5. Find the infinite sum of the following sequence:

(an) =
{

3
n , n odd
3

1−n , n even

20.1.6. Find the infinite sum of the following sequence:

(an) =
{

1
n , n odd

− 1
n+1 , n even

20.1.7. If we know for certain that a sequence tends to 0, do we know for
certain that the infinite sum of the sequence exists?
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20.1.8. If we know for certain that the infinite sum of a sequence exists, do
we know for certain that the sequence tends to 0?

20.2 Harmonics and Infinities

In the previous section, we saw that all sequences whose infinite sum is a finite
number tend to 0. In this section, we’re going to look at two different sequences
that do indeed tend to 0, and see whether we can find an infinite sum for either
of them.

The first sequence that we’re going to look at is the sequence (an) =
(

1
n

)
.

This sequence is often known as “the harmonic sequence,” and the first few
terms are 1, 12 , 1

3 , 1
4 . . .. Now, this sequence clearly tends to 0 (we saw this in the

previous chapter!), but can we find the infinite sum of the terms in it?
As it turns out, the answer is no. You see, we can think of the sequence as

being lots of small groups of numbers whose sum is greater than or equal to 1.
We start a group, and then keep adding subsequent terms into that group until
the sum of the group is greater than or equal to 1

2 , at which point we begin
a new group and repeat the process. That may not seem very clear, so take a
look at some of the terms in the sequence grouped this way:

(an) = 1︸︷︷︸
≥ 1

2

,
1
2︸︷︷︸

≥ 1
2

,
1
3
,
1
4︸︷︷︸

≥ 1
2

,
1
5
,
1
6
,
1
7
,
1
8︸ ︷︷ ︸

≥ 1
2

. . .

We can see that each subsequent group is going to need more and more terms
in it to make its sum greater than or equal to 1

2 , but we can always group the
terms in the sequence this way. To clarify the idea, consider the infinite sum of
the terms in an = 1

n and compare them to the terms in another sequence bn,
defined below:

an = 1,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
,
1
7
,
1
8

. . .

bn = 1,
1
2
,
1
4
,
1
4
,
1
8
,
1
8
,
1
8
,
1
8

. . .

It is easy to spot that the terms in an are always greater than or equal to the
corresponding terms in bn, but we can cleverly group the terms in bn so that
the sum of the terms in each group (after the first group, which is just the term
“1”) is exactly 1

2 :

(bn) = 1︸︷︷︸
=1

,
1
2︸︷︷︸

= 1
2

,
1
4
,
1
4︸︷︷︸

= 1
2

,
1
8
,
1
8
,
1
8
,
1
8︸ ︷︷ ︸

= 1
2

. . .



290 20. Series

Therefore we can think of summing the terms in bn as performing the sum of
infinitely many groups, each of which are made up of terms summing to 1

2 .
Clearly summing infinitely many halves will give an infinite result, and so the
infinite sum of the terms in bn is infinite. But we observed that the terms in an

are always greater than or equal to the corresponding terms in bn, and so the
sum of the terms in an must be greater than or equal to the sum of the terms
in bn. We can therefore conclude that the infinite sum of the terms in an must
be infinite too.

So, we’ve now seen an example of a sequence which does tend to 0, but does
not have a finite value of its infinite sum. Before, the only sequences that we’ve
seen that in fact do have a finite value for the infinite sum are the sequence
of all 0s and certain sequences where “cancellation” occurs. So are there any
sequences out there that are made up entirely of strictly positive terms (i.e.
banning all negative numbers and 0) that have a finite value of the infinite
sum?

Let’s take a look now at the sequence (an) =
(

1
2n

)
. This may look pretty

similar to the sequence (an) =
(

1
n

)
, but clearly the terms in (an) =

(
1
2n

)
get

smaller much more quickly. What does this mean for us in our search?
Actually, it means a great deal. Looking at some of the terms in the se-

quence, we have (an) = 1
2 , 1

4 , 1
8 , 1

16 . . .. And now it’s time for pies.
Imagine that every minute, someone gave you some pie, so that at the nth

minute you got 1
2n th of a pie. That is, in the first minute you got 1

2 a pie, in
the second minute you got 1

4 of a pie, in the third minute you got 1
8 th of a pie,

and so on. Now, rather than scoffing the pie at the earliest opportunity, you
decide that you would like to save the pie and put all of the pieces together to
see how much you end up with. Figure 20.1 shows what your collection of pie
would look like after various stages of time.

Look at what’s happening at each stage: the pie is getting nearer and nearer
to becoming a whole pie – but not quite getting there. Each time, half of the
difference between what we have and what we need to make a full pie is filled
in. We can repeat this process as many times as we like, but we’ll never quite
get a single, full pie.

The pie example is simply a way to visualise what’s going on numerically in
the sequence (an) =

(
1
2n

)
. Although the argument needs a little more formality

before we can consider it a “rigorous proof,” through this crazy example we’ve
observed another sequence that has a finite value for its infinite summation:
the sequence (an) =

(
1
2n

)
has the infinite sum of 1. What’s more, every term

in the sequence is positive, so we have found a strictly positive sequence with
a finite value for its infinite sum: exactly the type of sequence that we were
looking for. Now, equipped with the adrenaline from such a discovery (and the
nutrition of the pie), it’s time to tackle some exercises.
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Figure 20.1

EXERCISES

20.2.1. What is “The harmonic sequence”?

20.2.2. Does the sequence (an) =
(

1
n

)
have a finite value for its infinite sum?

20.2.3. Does the sequence (an) =
(
1 + 1

n

)
have a finite value for its infinite

sum?

20.2.4. Does the sequence (an) =
(

1
3n

)
have a finite value for its infinite

sum?

20.2.5. If we use the “pie” analogy again, how much of what we would need
to make half a pie would be added every minute in the sequence
(an) =

(
1
3n

)
?

20.2.6. Does the sequence (an) =
(

1
10n

)
have a finite value for its infinite

sum?
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20.3 Comparison Testing

One thing that you’ll have noticed about the sequences that we’ve studied
in this chapter is that it’s often hard to have a “gut instinct” as to whether
they will have a finite value as their infinite sum or not. For example, most
students (ourselves included) see the harmonic sequence and fully expect a
finite value when summing it infinitely – but don’t get one! We’ve used lots of
rather different logical arguments in coming to our conclusions about particular
sequences, and it may seem at first that working with series can be a bit
unpredictable.

Back in the Day

Luckily, many years ago mathematicians felt exactly that, and so set to work
finding “tests” that could be applied to sequences, to see whether they would
have a finite value as their infinite sum. They came up with two extremely useful
results, now known as “the ratio test” and “the comparison test.” I’ll leave the
ratio test to your lecturers, because that one needs a firmer understanding of
sequences than we’ve developed here, but the comparison test is very accessible
and very helpful.

Proving the comparison test requires a rather deep knowledge of sequences,
so this is going to have to be one of those “trust me” times. You’ll definitely
see a proof early on in your degree studies, but for now, having practice with
the test itself is helpful enough to warrant using it without knowing exactly
why it works. Anyway, here is the formal statement of the test:

Let
∞∑

n=1

an and
∞∑

n=1

bn be two series of non-negative real numbers, such that:

• an ≤ K · bn, for all n and some positive real number K.

• ∑∞
n=1 bn is a finite number.

Then
∑∞

n=1 an is also finite.

Right, let’s decrypt what it is that the comparison test is actually saying. We
firstly need to have two sequences that we are trying to sum, and neither of
those sequences may have any negative numbers in them. Then, if every term
in (an) is less than or equal to some K times the corresponding term in (bn),
and we know that we can infinitely sum (bn) and get a finite result, then we
will also get a finite result if we infinitely sum (an). Read the formal definition
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and this explanation a few more times if you need, and make sure that you’re
happy with what’s going on here before you proceed.

Now that we have the test stated, let’s start to look at where it might be
useful. The first thing to notice is that we need to already know that (bn) has
a finite value for its infinite sum, and so we definitely need to keep in mind all
of the sequences that we’ve studied previously. Let’s take a look at an example
of the test in action:

Does the sequence (an) =
(

5
2n

)
have a finite value for its infinite sum?

Now, we already know that the sequence (bn) =
(

1
2n

)
has a finite value for its

infinite sum, and so if we could find a suitable value of K such that an ≤ K ·bn,
then we’d have everything we need, because none of the terms in either sequence
are negative. Finding such a value of K in this instance really isn’t very hard: 5
will do perfectly well, as the inequality that we’re dealing with is not strict. So
there we have it: even though we don’t know what the terms in the sequence
(an) =

(
5
2n

)
look like, we know for sure that we can find the infinite sum of

this sequence to be a finite value.
Here’s one more example before we hit the exercises:

Does the sequence (an) =
(

5
n

)
have a finite value for its infinite sum?

To tackle this one, we’re going to need to look back at the comparison test
and pull a clever trick. The test said that if we could find a value of K such
that an ≤ K · bn (and all of the other conditions held), then so long as (bn)
has a finite value for its infinite sum, then so does (an). But how about if we
knew that (bn) didn’t have a finite value for its infinite sum? Is there anything
helpful we can do there? Yes. If we can now find a positive, real value of K

such that an > K · bn, then we can say for certain that (an) will not have a
finite value for its infinite sum. Follow the logic through: we’ve just reversed
everything. Now, we know already that the sequence (bn) =

(
1
n

)
does not have

a finite value for its infinite sum, and taking K to be 1
2 , for example, will give

us the inequality that we need. Hence we can conclude (an) =
(

5
n

)
does not

have a finite value for its infinite sum, using a sort of “contrapositive version”
of the comparison test.

EXERCISES

20.3.1. What condition is there on the terms of both (an) and (bn) in order
for us to apply the comparison test?

20.3.2. What conditions are there on the constant K in the comparison test?
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20.3.3. Could we use the comparison test (or its “contrapositive version”)
on the sequence (an) = ((−1)n)?

20.3.4. Could we use the comparison test (or its “contrapositive version”)
on the sequence (an) =

(
3 − 1

n

)
?

20.3.5. Use the comparison test, carefully stating which sequence you are
comparing to, to determine whether (an) =

(
3
2n

)
has a finite value

for its infinite sum.

20.3.6. Use the comparison test, carefully stating which sequence you are
comparing to, to determine whether (an) =

(
1 + 3

2n

)
has a finite

value for its infinite sum.

Where Now?

As you’ll have no doubt noticed, work on series is very much restricted by
how much work has already been done on sequences. As your knowledge of
sequences increases, you’ll be able to use the ratio test in order to determine
whether many sequences have a finite value as their infinite sum or not.

From here, you’ll be able to look at the two types of convergence: conditional
convergence and absolute convergence. Conditional convergence is similar to
what we started the chapter with – sequences that have a finite number as their
infinite sum only because of the negative terms in them. Absolute convergence
is for sequences that have a finite value as their infinite sum even if we take the
absolute values of the terms within them, hence ignoring any minus signs.

From that point, there is a pretty crazy thing that can be proven: If a
sequence is only conditionally convergent and not absolutely convergent, then
we can do something special. In theory, changing the order in which we sum
terms makes no difference to the result – but as it turns out, changing the order
of a conditionally convergent (and not absolutely convergent) series changes the
value of the infinite sum! If that’s not weird enough for you, then you’re a very
weird individual indeed.

Guide 2 Analysis, 2nd Ed. (M. Hart, Palgrave, 2001) explores many of
the clever tricks that you’ll learn to make use of when studying analysis at
university. It draws on a wide range of tools in the field and it’s definitely
worth a look before starting your degree.
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Here is a large set of useful formulae and identities. While you’re working
through problems, you should be able to find any common identity that you
require here. In many university exams, formulae books are not permitted – so
when you’re busy memorising useful things, this list is a good place to start.
Many of the formulae and identities here are beyond the scope of the subject
matter of the book itself, so don’t worry if there are things that you don’t know
how to use: this is only meant to be used as a reference.

A.1 Inequalities

The triangle inequality:

• |x + y| ≤ |x| + |y|
• |a − c| ≤ |a − b| + |b − c|
• |x| − |y| ≤ |x − y|
• |a − b| ≥ |(|a| − |b|)| ≥ −|a| + |b|
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A.2 Trigonometry, Differentiation
and Exponents

• d
dx (sin x) = cos x

• d
dx (cos x) = − sin x

• d
dx (tanx) = sec2 x

• d
dx (sec x) = sec x tanx

• d
dx (cosecx) = −cosec x cot x

• d
dx (cot x) = −cosec2x

• d
dx (arcsin x) = 1√

1−x2

• d
dx (arccos x) = − 1√

1−x2

• d
dx (arctanx) = 1

1+x2

• The chain rule: d
dx (M(x)N(x)) = M ′(x)N(x) + M(x)N ′(x)

• The product rule: d
dx (uv) = v du

dx + u dv
dx

• The quotient rule: d
dx

(
u
v

)
= v du

dx −u dv
dx

v2

• When θ ≈ 0, sin θ ≈ θ.

• When θ ≈ 0, cos θ ≈ 1 − θ.

• loga b = c ⇔ ac = b

• log a + log b = log(ab)

• log a − log b = log
(

a
b

)
• x log a = log(ax)

• logb(x) = logk(x)
logk(b)

A.3 Polar Coordinates

• x = r cos θ

• y = r sin θ

• x2 + y2 = r2

• Area of a Sector =
∫

r2

2 dθ



A.4 Complex Numbers 297

• Arc length =
∫ √

r2 + (dr
dθ )2dθ

• The limaçon: r = a + b cos θ or r = a + b sin θ

• The cardioid: r = a + b cos θ or r = a + b sin θ, and a = b

• The lemniscate: r2 = a cos(2θ) or r2 = a sin(2θ)

• The Archimedean spiral: r = a + bθ

A.4 Complex Numbers

• N is the natural numbers, which is the set of strictly positive whole numbers
(e.g. 1, 2, 3, . . . ).

• Z is the integers, which is the set of all whole numbers (e.g. . . . -2, -1, 0, 1,
2, . . . )

• Q is the rational numbers, which is the set p
q where p and q are integers (e.g.

1
2 , 7

5 ).

• R is the set of real numbers (e.g. 0.84243, . . . ,
√

2, π).

• C is the set of complex numbers, which is all the numbers a+ bi where a and
b are real numbers (e.g. i , 2 + 6i , 1

2 +
√

3i).

• √−1 = i

• a+bi
c+di = (a+bi)(c−di)

c2+d2

• (r(cos θ + i sin θ))n = rn(cos nθ + i sin nθ)

• eiθ = cos θ + i sin θ

• nth roots of unity: x = e
2πki

n

A.5 Vectors

• u · v = |u||v| cos θ

• u · v = u1v1 + u2v2 + · · · + unvn

• |u× v| = |u||v|n̂ sin θ, where n̂ is a unit vector orthogonal to both u and v.
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• u × v =

⎛⎝ u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

⎞⎠ =

∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
• u · (v × w) = v · (w × u) = w · (u × v)

• u × (v × c) = (u · w)v − (u · v)w

• If u = u1i + u2j + u3k and v is the direction vector v1i + v2j + v3k, then
the straight line through u with direction vector v has the equation x−u1

v1
=

y−u2
v2

= z−u3
v3

.

• The plane through position vector u with normal vector n = n1i+n2j+n3k
has the equation n1x + n2y + n3z + d = 0, where d = −u · n.

• The plane through the point with position vector u and parallel to v and w
has equation r = u + sv + tw.

A.6 Matrices

•
(

a b

c d

)
=
(

d e

f g

)
⇔ a = e, b = f, c = g and d = h.

•
(

a b

c d

)
+
(

d e

f g

)
=
(

a + d b + e

c + f d + g

)

•
(

a b

c d

)
−
(

d e

f g

)
=
(

a − d b − e

c − f d − g

)

•
(

a b

c d

)(
e f

g h

)
=
(

ae + bg af + bh

ce + dg cf + dh

)

•
∣∣∣∣ a b

c d

∣∣∣∣ = ad − bc

•
(

a b

c d

)−1

= 1
ad−bc

(
d −b

−c a

)

A.7 Matrices as Maps

• Reflection in the straight line making an angle of θ with the positive x-axis:(
cos(2α) sin(2α)
sin(2α) − cos(2α)

)
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• Anticlockwise rotation by θ about the origin:
(

cos θ − sin θ

sin θ cos θ

)

• Enlargement by a factor of m horizontally and n vertically:
(

m 0
0 n

)

• 3D rotation about the x-axis:

⎛⎝ 1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎞⎠

• 3D rotation about the y-axis:

⎛⎝ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞⎠

• 3D rotation about the z-axis:

⎛⎝ cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞⎠

A.8 Separable Differential Equations

• dy
dxP (x)Q(y) = R(x)S(y) becomes

∫ Q(y)
S(y) dy =

∫ R(x)
P (x)dx

• ∫ sin xdx = − cos x + k

• ∫ cos xdx = sinx + k

• ∫ tanxdx = ln | sec x| + k

• ∫ sec xdx = ln | sec x + tanx| + k

• ∫ cosecxdx = − ln |cosec x + cot x| + k

• ∫ cot xdx = ln | sin x| + k

Partial Fractions:

• f(x)
(x+a)n = A1

(x+a) + A2
(x+a)2 + A3

(x+a)3 + · · · + An

(x+a)n

• If px2 + qx + r is an irreducible polynomial: f(x)
(mx+n)(px2+qx+r) = A

mx+n +
Bx+C

px2+qx+r

A.9 Integrating Factors

• d
dx (P (x)y) = P ′(x)y + P (x) dy

dx
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• If dy
dx + P (x)y = Q(x), the integrating factor is e

∫
P (x)dx

• dy
dx + P (x)y = Q(x) becomes d

dx (A(x)B(y)) = C(x)

A.10 Mechanics

• v = u + at

• s = u+v
2 t

• s = ut + at2

2

• v2 = u2 + 2as

Vector Equations of Motion:

• v = dx
dt

• a = dv
dt

• a = vdv
dx

Circular Motion:

• arad = v2

R

• ω = dθ
dt

• v = rω

• a = rω2

• Tangential velocity: v = ω × r

• Tangential acceleration: atan = rα

• Angular momentum: L = r × p

• Moments of Inertia: I =
∑

i mir
2
i

• L = Iω

• Rotational kinetic energy: KErot = Iω2

2

• Torque: τ = r × F

• τ = dL
dt

• For a point mass: τ = Iα

Moments:
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• Centre of mass = m1r1+m2r2+···+mnrn

m1+m2+···+mn
=

∑
i miri∑

i mi

• MR =
∑

i miri

Rocket Propulsion:

• F = d
dt (mv) = mdv

dt + v dm
dt = −vex

dm
dt

• a = vex

m · dm
dt

• v − v0 = vex ln m0
m

Miscellaneous:

• Gravitation: F = −Gm1m2
r2 r̂

• Gravitational potential energy = −Gmem
r

• Hooke’s law: F = kx

• Gyroscope equation: Ω = wr
Iω = τ

L

A.11 Logic, Sets and Functions

• Injectivity: f(a) = f(b) ⇒ a = b or a �= b ⇒ f(a) �= f(b)

• Surjectivity: If f : A → B,∀ b ∈ B ∃ a ∈ A such that f(a) = b

• Bijectivity: Both injectivity and surjectivity

Truth Tables:

•

p ⇔ q

T T T
T F F
F F T
F T F
0 1 0

•

p ⇒ q

T T T
T F F
F T T
F T F
0 1 0
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•

p ∧ q

T T T
T F F
F F T
F F F
0 1 0

•

p ∨ q

T T T
T T F
F T T
F F F
0 1 0

•
¬ p

F T
T F
0 1

Set Language:
Symbol Meaning
x ∈ A x is an element of the set A

y /∈ B y is not an element of the set B

M ⊂ N M is a proper subset of N

P ⊃ Q Q is a proper subset of P

M ⊆ N M is a subset of N

P ⊇ Q P is a subset of Q

A ∪ B A or B (or both)
A ∩ B A and B

AC “Not A”
A \ B The complement of A in B

∅ “The empty set”
{} “The set”{
x2 : x ∈ Z

}
The set of squared xs, such that x is an integer{

x2|x ∈ Z
}

The set of squared xs, such that x is an integer

A.12 Proof Methods

• Induction: “If it’s true for n, then it’s true for n + 1”

• Strong induction: “If it’s true for 1, 2, 3, . . . , n − 1, then it’s true for n”
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• The negated version of x > y is x ≤ y

• The negated version of x ≥ y is x < y

• The negated version of x < y is x ≥ y

• The negated version of x ≤ y is x > y

A.13 Probability

• P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

• P (A ∩ B) = P (A)P (B|A)

• P (A|B) = P (A∩B)
P (B)

• Bayes’ law: P (B|A) = P (A|B)P (B)
P (A|B)P (B)+P (A|BC)P (BC)

• E(X) =
∑

xi
xipi

• E(aX) = aE(X) (“Expectation is a linear operator”)

• Var(X) = σ2 = E(X − μ)2 =
∑

xi
x2

i pi − μ2

• Var(aX) = a2Var(x)

• For independent events, E(XY ) = E(X)E(Y )

• For independent events, Var(aX + bY ) = a2Var(X) + b2Var(Y )

• For independent events, P (A ∩ B) = P (A)P (B)

• Cov(X, Y ) = E ((X − μX)(Y − μY )) = E(XY ) − μXμY

• Product moment correlation coefficient: ρ = Cov(X,Y )
σXσY
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A.14 Distributions

Distribution P (X = k) Mean Variance

Binomial(n, p)
(

n

k

)
pkqn−k np npq

Poisson(λ) e−λλk

k! λ λ

Geometric(p) pqx−1 1
p

1−p
p2

Normal(μ, σ2) 0 μ σ2

Uniform 0 a+b
2

(b−a)2

12

Exponential 0 1
λ

1
λ2

For Continuous Distributions:

• μ =
∫

xf(x)dx

• Var(X) =
∫

(X − μ)2f(x)dx

A.15 Making Decisions

• EMV strategy: Choose d∗ ∈ D to maximise
∑

i dpi

A.16 Geometry

• The sine rule: a
sin A = b

sin B
c

sin C = 2R

• The cosine rule: a2 = b2 + c2 − 2bc cos A

• Pythagoras’ theorem: a2 = b2 + c2

• Surface area of sphere = 4πr2

• Volume of sphere = 4
3πr3

• A hyperbola has an asymptote at x
a = ±y

b

Conic Sections:
Ellipse Parabola Hyperbola

Standard x2

a2 + y2

b2
= 1 y2 = 4ax x2

a2 − y2

b2
= 1

Parametric (a cos t, b sin t) (at2, 2at) (a sec t, b tan t) or (±a cosh t, b sinh t)
Eccentricity e < 1, b2 = a2(1 − e2) 1 e > 1, b2 = a2(e2 − 1)

Foci (±ae, 0) (a, 0) (±ae, 0)
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A.17 Hyperbolic Trigonometry

• cosh x = ex+e−x

2

• sinhx = ex−e−x

2

• tanh x = sinh x
cosh x

• d
dx (sinhx) = cosh x

• d
dx (cosh x) = sinhx

• d
dx (tanh x) = sech2x

• d
dx (arsinhx) = 1√

1+x2

• d
dx (arcoshx) = 1√

x2−1

• d
dx (artanhx) = 1

1−x2

• ∫ sinhxdx = cosh x

• ∫ cosh xdx = sinhx

• ∫ tanh xdx = ln | cosh x|
• cosh2 x = 1 + sinh2 x

• cosh 2x = cosh2 x + sinh2 x

• sinh 2x = 2 sinhx cosh x

A.18 Motion and Curvature

• Length of curve =
∫ b

a

∣∣∣∣dr
dt

∣∣∣∣ dt

• Unit tangent τ =
dr
dt

|| dr
dt ||

• Curvature κ = || dτ
dt ||

|| dr
dt ||

A.19 Sequences

• limn→∞(an) + limn→∞(bn) = limn→∞(an + bn)

• limn→∞(an) limn→∞(bn) = limn→∞(anbn)
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• limn→∞(an)
limn→∞(bn) = limn→∞(an

bn
)

• limn→∞( 1
n ) = 0

• limn→0( 1
n ) = ∞

A.20 Series

• ∑n
r=1 r2 = n

6 (n + 1)(2n + 1)

• ∑n
r=1 r = n

2 (n + 1)

• ∑n
r=1 r3 = n2

4 (n + 1)2

• sn =
∑

n an

• If an does not tend to 0, sn does not converge to a finite limit

Taylor’s Series:

• f(x) = f(a) + (x − a)f ′(a) + (x−a)2

2! f ′′(a) + · · · + (x−a)r

r! f (r)(a)

• f(a + x) = f(a) + xf ′(a) + x2

2! f
′′(a) + · · · + xr

r! f
(r)(a)

• sin x = x − x3

3! + x5

5! − · · · + (−1)r x2r+1

(2r+1)!

• cos x = 1 − x2

2! + x4

4! − · · · + (−1)r x2r

(2r)!

• sinhx = x + x3

3! + x5

5! + · · · + x2r+1

(2r+1)!

• cosh x = 1 + x2

2! + x4

4! − + · · · + x2r

(2r)!

• ex = 1 + x + x2

2! + · · · + xr

r!

• ln(x + 1) = x − x2

2 + x3

3 − · · · + (−1)r+1 xr

r , for −1 < x ≤ 1

A.21 Pure: Miscellaneous

• (a + b)n = an +
(

n

1

)
an−1b +

(
n

2

)
an−2b2 + · · · +

(
n

r

)
an−rbr + · · · + bn

•
(

n

r

)
= nCr = n!

r!(n−r)!
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•
(

n

r

)
+
(

n

r + 1

)
=
(

n + 1
r + 1

)
• ex ln a = ax

• loga x = logb x
logb a

• sin(A ± B) = sin A cos B ± sin B cos A

• cos(A ± B) = cos A cos B ∓ sin A sin B

• tan(A ± B) = tan A±tan B
1∓tan A tan B

• f ′(x) = limx→c
f(x)−f(c)

x−c

• f ′(x) = limh→0
f(x+h)−f(x)

h

• The trapezium rule:
∫ b

a
ydx ≈ b−a

2n ((y0 + yn) + 2(y1 + y2 + · · · + yn−1))

• The Newton-Raphson process: f(x) = 0, xn+1 = xn − f(xn)
f ′(xn)

A.22 Applications: Miscellaneous

• Markov’s inequality: P (X ≥ k) ≤ E(X)
k

• Chebychev’s inequality: P (|X − μ| ≥ ε) ≤ σ2

ε2

Solid Moments of Inertia
Slender rod, axis through centre ML2

12

Slender rod, axis through end ML2

3

Rectangular plate, axis through centre M(a2+b2)
12

Rectangular plate, axis along edge Ma2

3

Hollow cylinder M(R2
1+R2

2)
2

Thin-walled hollow cylinder MR2

Solid cylinder MR2

2

Solid sphere 2MR2

5

Thin-walled hollow sphere 2MR2

3





B
Extension Questions

Here are some harder questions, many of which tie together concepts from
different chapters in the book. They vary quite a lot in difficulty, so don’t be
disheartened if you find some of them tough. They’re meant to see if you can
apply some of the concepts explored in the chapters in new (and hopefully
interesting!) ways.

1. We say that a matrix A commutes with a matrix B if AB = BA. Find

what conditions must hold for a matrix A =
(

a b

c d

)
to commute with the

matrix B =
(

0 0
0 1

)
.

2. Let f(x) be a quadratic polynomial with real coefficients (i.e., f(x) =
ax2 + bx + c for a, b, c ∈ R). Show that if a complex number y = α + βi is
a root of the polynomial, then so is its complex conjugate ȳ = α − βi.

3. Find, in reiθ form, n points in the complex plane, α0, α1, ..., αn−1, such
that |αk| = 1 for k = 0, 1, ..., n − 1 , α0 = 1 and the αs are evenly spaced
on the unit circle with 0 ≤ θ < 2π. We call these the nth roots of unity.
Then find an expression for these in the form x + iy.

4. Look at the curve shown in Figure B.1. Parameterise this curve in the
complex plane.

5. Let

A =
(

1 2
−3 6

)
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Figure B.1

Find the eigenvalues and then find the two eigenvectors a =
(

a1
a2

)
and

b =
(

b1
b2

)
. Next, let the matrix P =

(
a1 b1
a2 b2

)
and find P−1. Find the

matrix P−1AP . What do you notice about this matrix?

6. A sniper aims a rifle at his target from a horizontal distance of 100 m. As
he shoots, the bullet leaves the gun with a horizontal velocity of 700 ms−1

and the initial vertical velocity is zero. During the bullet’s flight, the verti-
cal acceleration is 9.81 ms−2 downwards and (ignoring air resistance) the
horizontal velocity is constant. Formulate a differential equation for the
motion of the bullet and find the vertical distance that the bullet will fall
before hitting the target.

7. The police find the sniper’s victim at 9:00 am, at which time the tempera-
ture of the body is measured to be 28◦C. They wait an hour and measure
the temperature to be 26◦C. The normal temperature of a living body is
37◦C and the body is found in a room with temperature 24◦C. Newton’s
law of cooling states:

dT

dt
= −k(T − A(t))

In this equation, T is the temperature of the body, A is the temperature
of the surroundings and k is some constant. We take time t in hours. Use
the integrating factor method to find an estimate of the time at which the
victim was shot.

8. We say that f : A → B is not injective if there exists a1, a2 ∈ A such
that a1 �= a2 and f(a1) = f(a2). For g : B → C define the composition
g ◦ f(x) = g(f(x)). Using a contrapositive statement show that if g ◦ f is
injective then f is also injective.

9. There is a rare blood disease that affects a small number of individuals in
the population. An individual has the disease with probability p (where p is
very small), and a simple blood test is developed to discover if a sample of
blood is infected with disease. It is desired to know exactly which members
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of the population have the disease, but performing a test is expensive. In
order to help reduce the costs of testing, scientists decide to pool M samples
of blood together; that is, they take a blood sample from M individuals,
mix all the blood together and perform the test on the mixed sample. If
the test from the pooled sample returns a “positive” then every member
of the pool is tested individually (to ascertain exactly who is infected),
but if the test from the pooled sample returns a “negative,” all individuals
whose blood was in the pooled sample are free of the disease. Find the
value of M which would yield the least expected number of tests to be
performed overall. (Hint: You may use the fact that, for very small values
of p, (1 − p)M is approximately equal to 1 − pM .)

10. A car is going around a horizontal circular bend of radius 30 m, on a
banked, icy road (so there is no friction between the car and the surface)
which is inclined at 30 degrees to the horizontal. At what speed should the
car travel to stop it from slipping?

11. Show that 8n − 3n is divisible by 5 ∀ n ∈ N. (Hint: Use induction!)

12. A sequence (an) is called a Cauchy sequence if:

∀ ε > 0, ∃ N ∈ N such that ∀ n, m > N, |an − am| < ε

Show that the sequence
(

1
n

)
is a Cauchy sequence. (Hint: You will need

the triangle inequality from the appendix.)

13. Prove that all convergent sequences are Cauchy sequences (Hint: You will
need the triangle inequality again.)

14. Prove that if a series
∑∞

n=1 an converges, then the sequence (an) converges
to 0.

15. Write the contrapositive of the above statement and hence show that∑∞
n=1(−1)n does not converge.

16. Prove, by induction, that if both x and y are positive, then x < y ⇒ xn <

yn. Then use a contrapositive argument to show that if both x and y are
positive, xn < yn ⇒ x < y.

17. You decide to repeatedly flip a biased coin until you flip a head, at which
point you will stop and count the total number of times that you flipped
the coin. Call this number T . On any single coin flip, the probability of
flipping a head is p and the probability of flipping a tail is q = 1− p. Show
that, before starting to flip the coin, you should expect to flip the coin 1

p

times.
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18. Given two real numbers a and b, it is always true that: (a+b)(a−b) = a2−b2.
If we have two matrices A and B whose entries are all real numbers, is it
necessarily true that: (A + B)(A − B) = A2 − B2?

19. Give an example (not already used in the book!) of a sequence that is
increasing but that does not tend to ∞. Again, without using one already
in the book, give an example of a sequence that tends to ∞ but is not
increasing. Finally, give an example of a decreasing sequence in which all
the terms are greater than or equal to 0, but that doesn’t tend to 0.

20. Formally prove that if a sequence tends to 0, then it cannot also tend to
∞.



C
Worked Solutions to Extension Questions

1. We first find:

AB =
(

a b

c d

)(
0 0
0 1

)
=
(

0 b

0 d

)
Next we do:

BA =
(

0 0
0 1

)(
a b

c d

)
=
(

0 0
c d

)
Therefore, for the matrices to commute we require:(

0 b

0 d

)
=
(

0 0
c d

)
So we need b = 0 and c = 0. Notice that this means that only diagonal
matrices commute with the matrix B.

2. Let y = α + βi. Then:

a(α + βi)2 + b(α + βi) + c = 0

a(α2 + 2αβi − β2) + b(α + βi) + c = 0
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Equating coefficients of the real and imaginary parts we have that:

a(α2 − β2) + bα + c = 0

2aαβ + bβ = 0

Then for ȳ = α − βi we have:

f(ȳ) = a(α − βi)2 + b(α − βi) + c

= a(α2 − 2αβi − β2) + b(α − βi) + c

=
[
a(α2 − β2) + bα + c

]− i [2aαβ + bβ]

But we showed before that both parts in the square brackets are zero, hence
f(ȳ) = 0 so ȳ is also a root.

3. Let αk = rkeiθk . Then |αk| = rk, so we require that rk = 1. We then need
α1 = eiθ1 = 1 for 0 ≤ θ1 < 2π, so take θ1 = 0 (as e0 = 1). To be evenly
spaced on the unit circle we must have that the αks are divided by an angle
of 2π

n (as there are n of them). The first is therefore at an angle 2π
n from the

positive x-axis, the second is at an angle 2π
n + 2π

n = 4π
n from the positive

x-axis and so on. Hence the kth root is at an angle 2kπ
n from the positive

x-axis. Thus our nth roots of unity are written:

αk = e
2πk

n i

Recall that we make the substitutions:

x = r cos θ

y = r sin θ

Hence using our reiθ form we have that:

xk = cos
2πk

n

yk = sin
2πk

n

So αk = xk + iyk and we obtain the result:

αk = cos
2πk

n
+ i sin

2πk

n

4. We must divide the curve into four segments. Let γ1 be the straight line
from ε to R, γ2 be the semicircle from R to −R, γ3 be the straight line
from −R to −ε and let γ4 be the semicircle from −ε to ε.
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To find γ1 we need a to find a line that starts at ε and travels a distance
R − ε. So we parameterise the curve by:

γ1 = {ε + (R − ε)t : t ∈ [0, 1]}

Similarly, to find γ3 we need a to find a line that starts at −R and travels
a distance R − ε. So we parameterise the curve by:

γ3 = {−R + (R − ε)t : t ∈ [0, 1]}

To find γ2 we must think of the semicircle as a curve that keeps a constant
distance from the origin while the angle from the x-axis varies. Hence in
the reiθ form we must have r = R and θ varies between 0 and π. So we
parameterise the curve by:

γ2 =
{
Reit : t ∈ [0, π]

}
Similarly, to find γ4 in the reiθ form we must have r = ε and θ varies
between π and 0 (that is, from π down to 0). So we parameterise the curve
by:

γ4 =
{

εei(π−t) : t ∈ [0, π]
}

The (π − t) involved in the expression for γ4 comes from the fact that we
want the curve to be “swept out” clockwise. If you’re unsure of why this
works, try substituting in some values of t to see what you get.

5. Recall that we find eigenvalues λ from the equation det(A − λI2) = 0.

(A − λI2) =
(

1 − λ 2
−3 6 − λ

)
So we have:

det(A − λI2) = (1 − λ)(6 − λ) + 6

= λ2 − 7λ + 6 + 6

= λ2 − 7λ + 12

= (λ − 3)(λ − 4) = 0

So our eigenvalues are 3 and 4. For general λ the eigenvectors v must satisfy
Av = λv, or equivalently Av − λv = (A − λI2)v = 0. So for λ = 3 we
require: (

1 − 3 2
−3 6 − 3

)(
a1

a2

)
=
(−2 2
−3 3

)(
a1

a2

)
= 0
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Hence
(

a1
a2

)
=
(

1
1

)
is a corresponding eigenvector. For λ = 4 we require:(

1 − 4 2
−3 6 − 4

)(
a1

a2

)
=
(−3 2
−3 2

)(
a1

a2

)
= 0

Hence
(

a1
a2

)
=
(

2
3

)
is a corresponding eigenvector. Therefore:

P =
(

1 2
1 3

)
The determinant of P is 3 − 2 = 1. Hence we have that:

P−1 =
(

3 −2
−1 1

)
Then we can find:

P−1AP =
(

3 −2
−1 1

)(
1 2
−3 6

)(
1 2
1 3

)
=
(

3 −2
−1 1

)(
3 8
3 12

)
=
(

3 0
0 4

)
Notice: we have a diagonal matrix whose entries are the eigenvalues of A.

6. We have constant horizontal velocity, so to find the time the bullet takes
to hit the target we do:

100
700

=
1
7
s

Then acceleration a = dv
dt where v is velocity, hence:

dv

dt
= 9.81

So we can separate the variables and integrate:∫ t

0

dv =
∫ t

0

9.81 dt

v(t) = 9.81t + c

But the initial vertical velocity is 0, so when t = 0 we have v = 0. So
the constant c is 0. Then we use the fact that velocity v = dx

dt where x is
displacement, and so:

dx

dt
= 9.81t
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Once again we can separate the variables and integrate:∫ t

0

dx =
∫ t

0

9.81t dt

x(t) =
1
2
9.81t2 + k

We can set x = 0 when t = 0, hence k is 0. We then use the fact that the
bullet travels for 1

7 s to see:

x =
1
2
· 9.81

(
1
7

)2

=
1
2
· 9.81

(
1
49

)
= 0.100...m

So the bullet will fall approximately 10 cm before hitting the target.

7. Rearranging the equation we get:
dT

dt
+ kt = kA(t)

From the integrating factor method we must then multiply through by
e
∫

k dt = ekt, hence we have:
dT

dt
ekt + ktekt = kA(t)ekt

We can then write this as:
d

dt

(
Tekt

)
= kA(t)ekt

Integrating both sides between the limits t1 and t2 we have:∫ t2

t1

d

dt

(
Tekt

)
dt =

∫ t2

t1

kA(t)ekt dt

T (t2)ekt2 − T (t1)ekt1 = A(t)ekt2 − A(t)ekt1

To find k we must enter some values. We have that A = 24, t2 = 10, t1 = 9,
T (t2) = 26 and T (t1) = 28. Hence:

26e10k − 28e9k = 24e10k − 24e9k

26ek − 28 = 24ek − 24

26ek − 24ek = 28 − 24

2ek = 4

ek = 2

k = ln 2
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Then we go back to the equation, substituting in the values A = 24, t1 = 9,
T (t1) = 28, T (t0) = 37 and k as above. This gives us:

28e9 ln 2 − 37et0 ln 2 = 24e9 ln 2 − 24et0 ln 2

28eln 29 − 37eln 2t0 = 24eln 29 − 24eln 2t0

28eln 29 − 24eln 29
= 37eln 2t0 − 24eln 2t0

4eln 29
= 13eln 2t0

4eln 29

13
= et0 ln 2

ln

(
4eln 29

13

)
= t0 ln 2

Hence we have that:

t0 =
ln
(

4eln 29

13

)
ln 2

= 7.299... ≈ 7.30

So the approximated time of death is 7:18 am. (Remember, it’s 0.299
hours.)

8. If f is not injective then there exist a1, a2 ∈ A such that a1 �= a2 and
f(a1) = f(a2). Therefore, this implies that g(f(a1)) = g(f(a2)). So we have
that there exist a1, a2 ∈ A such that a1 �= a2 and g(f(a1)) = g(f(a2)), so
g ◦ f is not injective. By the contrapositive argument we have that if g ◦ f

is injective then f is also injective.

9. Let N be the number of tests that we perform on a block of M people.
Clearly either N = 1 (if the pooled test returns “negative”) or N = M + 1
(if the pooled test returns “positive,” in which case there is one pooled test
and M individual tests). So:

E(N) = 1 · P(N = 1) + (M + 1)P(N = M + 1)

The probability of an individual not having the disease is 1−p. For a pooled
sample from M individuals to return “negative,” all M individuals must
not have the disease, and so the probability of this happening is (1− p)M .
So:

E(N) = (1 − p)M + (M + 1)(1 − (1 − p)M )

= M + 1 − M(1 − p)M

So the expected number of tests per person is:

E(N)
M

= 1 +
1
M

− (1 − p)M
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Use the approximation given in the question:

E(N)
M

= 1 +
1
M

− (1 − pM)

=
1
M

+ pM

We need to minimise E(N)
M . We can do this by differentiating:

d

dM

(
E(N)
M

)
= − 1

M2
+ p

To find the minimum, set this equal to 0 and solve:

1
M2

= p

M2 =
1
p

M =
1√
p

We take the positive square root because having a negative value for M

doesn’t make sense!

10. We will call the mass of the car m and the contact force R. Then, resolving
vertically we have that:

R cos 30 = mg

R =
2mg√

3

Notice that this is greater than the weight of the car, because the car’s cir-
cular motion causes it to be forced “into” the road, and hence the reaction
force increases.

We then resolve horizontally, using the equation for circular motion F =
mv2

r with r = 30 m:

R sin 30 =
mv2

30

v2 =
15
(

2mg√
3

)
m

= 10
√

3g

v =
√

10
√

3g ms−1
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11. For n = 1 we have 8 − 3 = 5 which is divisible by 5. Then, if it is true for
the nth case, for n + 1 we have:

8n+1 − 3n+1 = 8n+1 − 3 · 8n + 3 · 8n − 3n+1

= 8n(8 − 3) + 3(8n − 3n)

= 8n · 5 + 3(8n − 3n)

It is clear that the 8n ·5 is always divisible by 5 and 8n−3n is the nth case.
Hence, by induction, this holds for all n.

12. We have that (an) =
(

1
n

)
and (am) =

(
1
m

)
. So for the sequence to be

Cauchy we require: ∣∣∣∣ 1n − 1
m

∣∣∣∣ < ε

Using the triangle inequality, we have that:∣∣∣∣ 1n − 1
m

∣∣∣∣ ≤ ∣∣∣∣ 1n
∣∣∣∣+ ∣∣∣∣ 1

m

∣∣∣∣
Therefore if we can choose an N such that 1

n < ε
2 and 1

m < ε
2 then the

definition will hold. Rearranging, we require m,n > 2
ε . So if we choose

N > 2
ε we have that ∀ ε > 0, ∃ N ∈ N, N > 2

ε such that ∀ n, m > N :∣∣∣∣ 1n − 1
m

∣∣∣∣ ≤ ∣∣∣∣ 1n
∣∣∣∣+ ∣∣∣∣ 1

m

∣∣∣∣
<

ε

2
+

ε

2
= ε

13. If a sequence (an) converges to a limit a then:

∀ ε

2
> 0, ∃ N1 ∈ N such that ∀ n > N1, |an − a| <

ε

2

Similarly we can say that:

∀ ε

2
> 0, ∃ N2 ∈ N such that ∀ m > N2, |am − a| <

ε

2

(Note that ε > 0 ⇔ ε
2 > 0). Then if we pick N = max{N1, N2}, both of

these statements hold. Hence ∀ ε > 0 ∃ N ∈ N such that ∀ n, m > N :

|an − am| = |an − a + a − am|
≤ |an − a| + |a − am|
= |an − a| + |am − a|
<

ε

2
+

ε

2
= ε
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The top line is by the triangle inequality. Also note that the third line holds
because |x| = | − x| for any x.

This is precisely the definition of what it means for a sequence to be Cauchy.

14. If a series
∑∞

n=1 an converges then the partial sums
∑n

n=1 an converge.
Hence (

∑n
n=1 an −∑n−1

n=1 an) tends to 0. But this is simply:

(a0 + · · · + an−1 + an) − (a0 + · · · + an−1) = an

Hence an tends to 0.

15. The contrapositive is “if the sequence (an) does not converge to 0 then∑∞
n=1 an does not converge.” It is clear that the sequence ((−1)n) does not

converge to 0, therefore
∑∞

n=1(−1)n does not converge.

16. For n = 1 we have that x < y ⇒ x < y, which is obviously true. Multiplying
through by xk yields:

x · xk < y · xk

Then if also xk < yk, we can note:

x · xk < y · xk < y · yk

Therefore, we have:
xk+1 < yk+1

So the first statement holds by induction.

The contrapositive of the the second statement is: “x ≥ y ⇒ xn ≥ yn.”
For n = 1 we have that x ≥ y ⇒ x ≥ y which holds. If we also have that
xk ≥ yk then we can again arrive at:

x · xk ≥ y · yk

So we get:
xk+1 ≥ yk+1

So, by induction, the statement is true.

17. For T to equal some n ∈ N, we would need a string of n − 1 tails followed
by a head. Each flip of the coin is independent, so the probability of this
happening is qn−1p. We can therefore write P(T = n) = qn−1p. Then the
expected number of flips is:

E(T ) =
∞∑

n=1

nP(T = n)

=
∞∑

n=1

nqn−1p

= p(1 + 2q + 3q2 + · · · )
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Notice that 1 + q + q2 + q3 + · · · is an infinite geometric series, whose sum
is 1

1−q . So:

1 + q + q2 + · · · =
1

1 − q

If we differentiate both sides with respect to q:

1 + 2q + 3q2 + · · · =
1

(1 − q)2

Plugging this back into the expression for the expectation yields:

p

(
1

(1 − q)2

)
Recalling that 1 − q = p gives the final answer p

p2 = 1
p .

18. No, the statement isn’t true. The reason that this works for real numbers
is that real numbers have the property that ab = ba, so:

(a + b)(a − b) = a2 − ab + ba − b2

= a2 − ab + ab − b2

= a2 − b2

But for matrices A and B it is not always true that AB = BA (recall
extension question 1!), so we can’t say that −AB + BA = 0.

19. There are many examples of each of the types of sequences required. Some
examples for the first type are (an) =

(−1
n

)
or (an) = 1, 1, 1, 1, 1, . . ., of the

second type are (an) = 1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6, . . . or (an) = (n + sin n).
Finally, for the third type any sequence of the form (an) =

(
k + 1

n

)
, where

k is a positive real number, will do.

20. Writing the definition of “(an) → 0” in formal language gives:

(an) → 0 ⇔ ∀ ε > 0 ∃ N1 ∈ N such that |an| < ε ∀ n ≥ N1

Similarly, the definition of “(an) → ∞” is, in formal language:

(an) → ∞ ⇔ ∀ C > 0 ∃ N2 ∈ N such that an > C ∀ n ≥ N2

Using the first definition, fix an ε > 0 and find the corresponding N1. Then
choose any C > ε. We know that ∀ n ≥ N1, we must have |an| < ε, and
so |an| < C and so an < C. Hence no such N2 could ever exist and hence
(an) cannot tend to ∞.



Solutions to Exercises

Chapter 1
Test Yourself (page 1):

1. 5,6,7.
2. x < 5
3. x ≤ 1
4. x > 4
5. x ≥ 1
6. x < −1 and x > 1
7. −1 < x < 4
8. x < 0 and x > 3
9. −10 < x < 4

10. −3−√
69

2 < x < 2 and x > −3+
√

69
2

Exercise 1.1 (page 4):

1. 8,9,10.
2. x > 11
3. x > 7
4. x ≤ 5
5. x < 5
6. x ≤ −10
7. x < −12
8. x ≤ 2
9. x > −2

3

10. x > 1

Exercise 1.2 (page 6):

1. x < 5
2. x ≤ −3 and x ≥ 3
3. −10 < x < 10
4. x < −4 and x > 4
5. No solutions
6. x < −4

3

7. 0 < x < 4
8. x ≤ 0 and x ≥ 9

Exercise 1.3 (page 11):

1. x < −2 and x > 2
2. x < 0 and x > 2
3. 0 < x < 7
4. x < −3 and x > −1
5. −3 −√

12 < x < −3 +
√

12
6. x < −8 and x > −4
7. −6 < x < 3
8. x < −5 and 2 < x < 3
9. x < 11

4 and x > 3
10. 2−√

12 < x < 3 and x > 2 +
√

12
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Chapter 2

Test Yourself (page 13):

1. Divide through by sin2 x to arrive
at 1 + cot2 x = cosec2x, and then
rearrange.

2.
√

2+
√

6
4

3. −
√

3
2

4. tan(2x) = sin(2x)
cos(2x) = 2 sin x cos x

1−2 sin2 x
.

Then divide top and bottom by
cos2 x.

5. 2x cosec x − x2 cot x cosec x

6. −4 sin(2x) cos(2x)
7.

√
3

8

8. e10x

9. 4e2x + 8xe2x

10. 2
x

Exercise 2.1 (page 19):

1. LHS = sin3 x
cos x +sinx cos x = sin x

cos x −
sin x cos2 x

cos x + sin x cos x = tan x.

2. LHS = sin2 x
cos x = 1−cos2 x

cos x = sec x −
cos x

3.
√

6−√
2

4

4.
√

6−√
2

4

5. 1
2

6.
√

2−√
6

4

7. sin2 x = 1
2 (1 − cos(2x))

8. LHS = 2 sinx cos x sin x
cos x = 2 sin2 x

= 1 − cos(2x)
9. LHS = sin(2x)

2 cos2 x (2 cos2 x − 1)
= sin(2x) − sin(2x)

2 cos2 x = sin(2x) −
tanx

10. tan(A ± B) = sin(A±B)
cos(A±B)

= sin A cos B±sin B cos A
cos A cos B∓sin A sin B . Then

divide top and bottom by
cos A cos B and cancel.

Exercise 2.2 (page 23):

1. 2x cos x − x2 sin x

2. 3x5 tanx + 1
2x6 sec2 x

3. − cot x cosec x

4. −cosec2x

5. sec x(1 + x tanx)
6. 2 cos(4x)
7. −6 sinx cos5 x

8. sin
(

x
2

)
cos

(
x
2

)
9.

√
2

6

10. π
6 −

√
3

8

Exercise 2.3 (page 27):

1. e7x

2. e3(2y−x)

3. 4x

4. x3

5. 2e2x

6. x2ex3

7. ex sin x + ex cos x

8. 3
x

9. 2xex2
ln(4x) + ex2

x

10. 12x2 ln(x2) + 8x2

Chapter 3

Test Yourself (page 31):

1. (3, π)
2. (1, π

4 )
3. (2

√
2, 3π

4 )
4. (2, 4π

3 )
5. θ = 5π

4

6. r2 − 4r cos θ + 3 = 0
7. r = 2 sec(θ − π)
8. r = a + bθ

9. (2
√

3, 0.955, 7π
4 )

10. r = 20, t = 50

Exercise 3.1 (page 36):

1. (2, 0)
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2. (4, 3π
2 )

3. (−2, 0)
4. (5

√
2, 5

√
2)

5. (4
√

3, 4)
6. (2

√
2, π

4 )
7. (3, π

2 )
8. (2, 5π

6 )

Exercise 3.2 (page 40):

1. θ = π
2

2. θ = 3π
4

3. θ = 5π
4

4. r = 4
5. r = 1√

2
sec(θ − 3π

4 )

6. r = 2
√

2 sec(θ − π
4 )

7. r = 2 cos θ − π
2 ≤ θ ≤ π

2

8. r2 − 2
√

2r cos(θ − π
4 ) − 47 = 0

Exercise 3.3 (page 45):

1. (
√

2, π
4 , 1)

2. (2
√

2, π
4 , π

2 )
3. r = 1, ϕ = π

4

4. r = 4, t = 3
5. r = 3

√
2, θ = 3π

4

6. r2 = a cos(2θ)
7. r2 = a sin(2θ)
8. r = a + b cos θ or r = a + b sin θ

9. r = a + b cos θ or r = a + b sin θ,
and a = b

10. An Archimedean spiral

Chapter 4

Test Yourself (page 49):

1. N is the natural numbers, Z is the
integers, Q is the rational num-
bers, R is the real numbers and C

is the complex numbers.
2. x = ±9i

3. 3 ± i

4. 1 + 5i

5. 22 − 7i

6. 14
17 − 12

17 i

7. −7
10 + 11

10 i

8. See Figure C.1 (at end of
solutions).

9. 2e
π
3 i

10. −8 + 8
√

3i

Exercise 4.1 (page 52):

1. α =subtraction
β =division
γ =“Analysis”
δ =

√−1
2. −1
3. A complex number is of the form

a+bi, where a and b are real num-
bers and i =

√−1.
4. ±10i

5. ±8i

6. 1 ± i

7. −2 ± 4i

8. 1
4 ± 1

4 i

9. 1 ±√
2i

10. 2
3 ±

√
5

3 i

Exercise 4.2 (page 55):

1. 10 + 8i

2. 7 − i

3. 0
4. −3 + 12i

5. 15 − 9i

6. 27 + 36i

7. 23 + 11i

8. 21 − 15i

9. 38 + 21i

10. 76 + 32i

11. 3 + i

12. 5
2 − 1

2 i
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13. −1
2 + 2i

14. 67
58 − 37

58 i

15. 1 + i

16. 3
2 + 5

2 i

Exercise 4.3 (page 59):

1. See Figure C.2 (at end of
solutions).

2.
√

13
3.

√
5

4. π
2

5. 5π
4

6. 2
√

2e
3π
4 i

7. 2e
5π
6 i

8. −324

Chapter 5

Test Yourself (page 61):

1. 10
2. x = ±

√
115
12

3. (−7, 19, 9)
4. (6

√
17, 14

√
17, 2

√
17, 6

√
17)

5. 43i + 19j + 15k
6. 42
7. (18, 72, 54)
8. θ = arccos 16

21

9. (3,−6, 3)
10. −79

Exercise 5.1 (page 66):

1. 14
2. ± 6

13

3. (1, 14, 5,−5)
4. (1, 1,−13, 10, 13)
5. (20, 35, 15, 40)
6. (−2, 13, 9)
7. (−74, 48, 56,−20)
8. (63, 58, 23)

9. (44, 22, 77)
10. (6

√
2, 27

√
2,−33

√
2, 42

√
2)

Exercise 5.2 (page 69):

1. 2i + 7j + 3k
2. u + v = 11i − 11j − 2k

5u = 40i − 10j − 30k
3. 92
4. 106
5. 87
6. (158, 79, 316)
7. θ = arccos 63

65

8. θ = arccos 84
85

Exercise 5.3 (page 71):

1. (−25,−5, 17)
2. (−9, 13, 1)
3. (8, 7,−6)
4. (16,−2,−26)

Chapter 6

Test Yourself (page 73):

1.
(

7 9
6 0

)

2.

⎛⎝26 −10
24 16
4 17

⎞⎠
3.
(

2 40
−12 8

)
4.
(

13 −6
−1 14

)

5.

⎛⎝ 0 −13
10 22
32 21

⎞⎠
6.

⎛⎝53 43
25 6
−3 31

⎞⎠
7.
(−17 7 −14

28 2 97

)
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8. 11

9.
(

4 3
−5
2 −2

)
10.

(−3 19
3

1 −2

)
Exercise 6.1 (page 77):

1. A = (αij)3×5

2. 3 × 5

3.
(

7 9
3 6

)
4.
(−10 7

3 5

)

5.

⎛⎝24 3 12
−6 18 0
15 3 −6

⎞⎠
6.

⎛⎝−7 9 −8
10 0 −12
1 15 6

⎞⎠
7. No. B and C are not of the same

order, and so addition and sub-
traction are not possible.

8.
(

1 24
10 36

)
9.
(

3 −3 0
−18 18 51

)

10.

⎛⎝ 6 13 −2
−10 −13 −7
3 14 15

⎞⎠
Exercise 6.2 (page 82):

1.
(

2 34
3 31

)
2.
(

12 11
20 19

)

3.

⎛⎝14 16
24 39
14 25

⎞⎠
4.
(−3 −15 8

16 66 −18

)

5.
(

3 4
2 5

)
and

(
3 4
2 5

)
. They are

both the same. It doesn’t matter
whether we premultiply of post-
multiply by the identity matrix,
we always get the original matrix
back.

6.
(−16 6

0 8

)
7.
(

1 −5
16 43

)
8.
(−6 −24

28 1

)
9.
(

21 4
5 11

)

10.

⎛⎝25 25 25
0 1 8
12 13 31

⎞⎠
Exercise 6.3 (page 86):

1. −10
2. −10
3. −9
4. −46
5. A and B are invertible, but C is

not.

6.
(

5
24

13
48−1

8
−1
16

)
7.
(

2 7
3

1 1

)
8.
(−1

14
−3
14

2
21

−1
21

)
Chapter 7

Test Yourself (page 89):

1.
(−2 1

4 −2

)
2.
(

0 −1
2 3

)
3. x1 = 3x0 − 2y0, y1 = y0
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4.
(

1 0
0 −1

)
5.

(√
2

2 −
√

2
2√

2
2

√
2

2

)

6.
(−3 0

0 −3

)
7. λ = 8
8. λ = −2

9. λ = 3,v =
(

1
1

)
and λ = −2,

v =
(

1
−4

)
10. λ = 1,v =

(
2
7

)
and λ = −4,

v =
(

1
1

)
Exercise 7.1 (page 94):

1. The identity map.

2.
(−1 0

0 1

)
3.
(

2 3
1 −4

)
4.
(−3 0

1 −2

)
5. x1 = x0 + 2y0, y1 = 5x0 + 3y0

6. x1 = 2x0 − 3y0, y1 = 6x0 + 2y0

7. x1 = 4x0, y1 = 2x0 + y0

8. (0, 0)

Exercise 7.2 (page 104):

1.

(
1
2

√
3

2√
3

2 − 1
2

)

2.

(
− 1

2

√
3

2√
3

2
1
2

)

3.

(√
2

2 −
√

2
2√

2
2

√
2

2

)

4.

(
1
2 −

√
3

2√
3

2
1
2

)

5.
(

1
2 0
0 1

2

)
6.
(

3 0
0 6

)
7.

(
3
√

3
2 − 3

2
3
2

3
√

3
2

)

8.
(

0 −2
−4 0

)
9.

(√
3

2 − 1
2

− 1
2 −

√
3

2

)

10.

(
1

√
3√

3
2 − 1

2

)

Exercise 7.3 (page 111):

1. λ = 1
2. λ = 4
3. λ = −2
4. λ = 4

5. λ = 5,v =
(

3
1

)
and λ = −2,

v =
(

1
−2

)
6. λ = 5,v =

(−1
7

)
and λ = −1,

v =
(

1
−1

)
7. λ = 2,v =

(
5
1

)
and λ = −4,

v =
(

1
−1

)
8. λ = 4,v =

(
1
3

)
and λ = −6,

v =
(

3
−1

)
9. λ = 3,v =

(
1
4

)
and λ = 6,

v =
(

1
1

)
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10. λ = −3,v =
(

5
−3

)
and

λ = −4,v =
(

2
−1

)
Chapter 8

Test Yourself (page 113):

1. 4x2+7x+10
x2(x+2)

2. 7
4

(
1

x−2 − 1
x+2

)
3. 3 ln

∣∣∣ x
x+1

∣∣∣+ k

4. y = x
kx+1

5. y = Ae
x2
2

6. y =
√

1
2 ln |xk|

7. y = Ae
−1
9x3

8. y =
√

22
3 ln

∣∣∣ x
x+3

∣∣∣+ k

9. 6 ln
∣∣∣y−1

y

∣∣∣ = x2 + k

10. 1
2 ln

∣∣∣ y
y+2

∣∣∣ = ln
∣∣∣x−1
x+1

∣∣∣+ k

Exercise 8.1 (page 118):

1. 2x+19
5x+10

2. 16x+13
30

3. 2x3−9
2x2−7x+3

4. −2x
15

5. 3
x+2 + 1

x−4

6. 7
x−1 + 5

x+3

7. 6
x−1 − 5

x+2

8. 3
x−2 − 1

x+2

9. ln |x| + ln |x − 2| + k

10. 3 ln |x + 1| + 4 ln |x − 3| + k

11. 7 ln |x − 4| − ln |x + 1| + k

12. 3 ln |x − 4| + 10 ln |x − 5| + k

Exercise 8.2 (page 123):

1. y = x2 + 3x + k

2. y =
√

x2 + k

3. y = kx

4. y = Ae
x2
2

5. y =
√

2 ln |x| + k

6. y =
√

2x2 + k

Exercise 8.3 (page 126):

1. x + k = 1
2 ln

∣∣∣y−1
y+1

∣∣∣
2. x + k = ln

∣∣∣y−1
y

∣∣∣
3. y = 2

√
ln
∣∣x−3

x

∣∣+ k

4. y =
√

7
2 ln

∣∣∣x−1
x+1

∣∣∣+ k

5. 5 ln
∣∣∣ y
y+1

∣∣∣ = 2 ln
∣∣x−3

x

∣∣+ k

6. 4 ln
∣∣∣y−1
y+1

∣∣∣ = 9 ln
∣∣∣ x
x+1

∣∣∣+ k

Chapter 9

Test Yourself (page 127):

1. dy
dx + P (x)y = Q(x)

2. ex4

3. x2

4. ex5 dy
dx + 5x4ex5

y = 3ex5
x2

5. d
dx (2xy) = 17x2

6. d
dx (e2x3

y) = 12

7. d
dx (ex2

y) = 4x3ex2

8. y = 4x + k
x

9. y = 5 + ke−x2

10. y = ex − ex

x + k
x

Exercise 9.1 (page 131):

1. e
∫

P (x)dx

2. e3x

3. e2x2

4. e
3x2
2

5. e
−1
2x2

6. x2

7. x dy
dx + y = 6x

8. ex3 dy
dx + 3ex3

x2y = 4xex3
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Exercise 9.2 (page 133):

1. d
dx (3xy) = 12x

2. d
dx (4x2y) = ex2

3. d
dx (e3xy) = 16

4. d
dx (ex2

y) = 8x

5. d
dx (e3x2

y) = 4xe3x2

6. d
dx (x2y) = x4

Exercise 9.3 (page 135):

1. y = x + k
x

2. y = 1 + k
x

3. y = 4
3 + ke−3x

4. y = 3 + ke−x2

5. y = 1 + ke−x4

6. y = 3 − 3e−x3

Chapter 10

Test Yourself (page 137):

1. v = 24, x = 140
2. v = 9

2 , x = 12 + ln 1
4

3. A body will continue in uniform
motion unless acted upon by a
force. Force equals rate of change
of momentum. For every action,
there is an equal and opposite
reaction.

4. 15 N
5. 373 N
6. 7 ms−1

7. 4500
g

8. T1 = 2g
√

3 and T2 = 2g

9. g√
2

10. 30s

Exercise 10.1 (page 144):

1. 28 ms−1

2. 280 m
3. 32 ms−1

4. 44 m
5. v = 290 ms−1, x = 952 m
6. v = 8 2

35 , x = 73 4
5 + ln 5

14

Exercise 10.2 (page 148):

1. 30 N
2. 25 ms−1

3. −200 N
4. 9600 N
5. 2

√
2 ms−1

6. 20g

7. 50
g

Exercise 10.3 (page 154):

1. T

2. 5g
√

2
3. T1 = 3g

√
3

2 , T2 = 3g
2

4. T1 = 8g
√

6√
3+1

, T2 = 16g√
3+1

5.
√

2T

6. xg sin y

Chapter 11

Test Yourself (page 157):

1. “Is not an element of”
2. Yes
3. No
4. 5,15,25.

5.

¬ p

F T
T F
1 0

6.

p ∨ q

T T T
T T F
F T T
F F F
0 1 0

7. Yes, the statements are logically
equivalent.
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8. No, the statements are not logi-
cally equivalent.

9. None of these.
10. Bijective

Exercise 11.1 (page 161):

1. “Is an element of”
2. A \ B is the set of elements in A

that are not in B.
3. The set of integer multiples of 4.
4. Yes
5. No
6. 0
7. 5
8. 28

Exercise 11.2 (page 166):

1.

p ⇔ q

T T T
T F F
F F T
F T F
0 1 0

2.

p ∧ q

T T T
T F F
F F T
F F F
0 1 0

3. No, the statements are not logi-
cally equivalent.

4. Yes, the statements are logically
equivalent.

5. No, the statements are not logi-
cally equivalent.

6. Yes, the statements are logically
equivalent.

Exercise 11.3 (page 169):

1. “For every element in the range,

there is at least one element in the
domain that is mapped to it.”

2. “There is only one value of x for
each value of y” (or, more for-
mally, “No two distinct elements
in the domain are mapped to the
same element in the range.”)

3. No. a = b ⇒ f(a) = f(b) is not
the correct statement of injectiv-
ity (in fact, it is simply a property
that every function has).

4. No. The negative part of the range
will not be mapped to.

5. Yes
6. No. The negative part of the range

will not be mapped to.
7. Whenever an odd number is taken

from the domain, there is nowhere
for it to be mapped to in the
range.

8. Only tanx is (because sin x and
cos x don’t map outside of the re-
gion from −1 to 1).

Chapter 12

Test Yourself (page 171):

1. Every nonempty set of N has a
least element.

2. 1
3. 14
4. 22
5. It works for the first value of n. In

our rule, if it’s true for n, it’s true
for n + 1.

6. 3 + · · · + 3n = 3n(n+1)
2

3 + · · · + 3n + 3(n + 1)
= 3n(n+1)

2 + 3(n + 1)
= (3n+3)(n+2

2

= (3(n+1))(n+1)+1)
2
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7. “Guess” the rule 4n − n
2 (n + 1).

3 + · · · + (4 − n) = 4n − n
2 (n + 1)

3 + · · · + (4 − n) + (3 − n)
= 4n − n

2 (n + 1) + (3 − n)
= 4n + 4 − n2+3n+2

2

= 4(n + 1) − n+1
2 (n + 2)

8. I am drinking coffee ⇒ I am hot.
(Note: I am hot ⇒ I am drinking
coffee is wrong. Nowhere does it
say that the only time I get hot is
when drinking coffee)

9. The water is not deep here ⇒ Div-
ing is not permitted here (Diving
is not permitted here ⇒ the water
is not deep here is wrong)

10. x > 7 ⇒ x ≥ 7. Contrapositive is
x < 7 ⇒ x ≤ 7 (You guessed it:
any other order is wrong)

Exercise 12.1 (page 173):

1. 1
2. 2
3. 2
4. No. Consider any subset of N for

which we can’t find the largest
value (like n2 or n3) to see that
we can’t find a greatest element.

5. No. Look at this set:
{−n|n = 1, 2, 3, . . .}. The numbers
in the set are certainly integers,
but we will never find the small-
est (or “most negative”) element.

Exercise 12.2 (page 177):

1. 1 = 1, so OK.
1 + 1 + · · · + 1︸ ︷︷ ︸

n times

= n

1 + 1 + · · · + 1︸ ︷︷ ︸
n times

+1 = n + 1

So 1 + 1 + · · · + 1︸ ︷︷ ︸
n+1 times

= n + 1

2. 1 + 1 = 2, so OK.
2 + · · · + 2n = n2 + n

2 + · · · + 2n + 2(n + 1)
= n2 + n + 2(n + 1)
= (n + 1)2 + (n + 1)

3. Recall that RHS = (n
2 (n + 1))2.

( 1
2 (1 + 1))2 = 1, so OK.

13 + · · · + n3 = (n
2 (n + 1))2

13 + · · · + n3 + (n + 1)3 = (n
2 (n +

1))2 + (n + 1)3

= (n2+3n+2)2

4

=
(

n+1
2 (n + 2)

)2
4. “Guess” the rule n2.

1 = 1, so OK.
1 + · · · + (2n − 1) = n2

1 + · · ·+ (2n− 1) + (2(n + 1)− 1)
= n2 + (2(n + 1) − 1)
= (n + 1)2

5. “Guess” the rule 2n(n + 1).
2(1 + 1) = 4, so OK.
4 + · · · + 4n = 2n(n + 1)
4 + · · · + 4n + 4(n + 1)
= 2n(n + 1) + 4(n + 1)
= (2n + 2)(n + 2)
= (2(n + 1))(n + 2)

Exercise 12.3 (page 180):

1. • I have been up the Eiffel Tower
at least once ⇒ I don’t have a
phobia of heights.

• x is not odd ⇒ either x is 2 or
x is not prime.

• The positive number is not di-
visible by 3 ⇒ The sum of the
digits is not divisible by 3.

• x ≤ 0 ⇒ x is not positive.
2. If the number is a positive whole

number, we see from iv that x > 0.
It is therefore either odd or even.
Now, the contrapositive of ii is
helpful: if the number we choose
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is not odd, and is not 2, then we
see for sure that the number is not
prime.

Chapter 13

Test Yourself (page 183):

1. 362880
2. 1
3. 10!

4!6!

4. n!
r!(n−r)!

5. 25
(

24
25

)20
6.

⎛⎝13
1

⎞⎠⎛⎝13
2

⎞⎠⎛⎝13
3

⎞⎠⎛⎝13
4

⎞⎠
⎛⎝52

10

⎞⎠
7. 0.94
8. 1

3

9. 19
99

10. 4
11

Exercise 13.1 (page 187):

1. 120
2. 40320
3. 10
4. 15
5. 8
6. n!

r!(n−r)!

7. 1
3

8. 1
2

9. Yes
10. No

Exercise 13.2 (page 190):

1. 20
(

19
20

)20
2. 10

(
9
10

)20
3.
(

1
6

)10
4.
(

10
8

)(
1
6

)10

5. 0.72
6. £8.70

Exercise 13.3 (page 193):

1. 1
4

2. 0
3. 1

3

4. 1
8

5. 1
4

Chapter 14

Test Yourself (page 195):

1. Poisson
2. Binomial

3.
(

10
4

)(
1
13

)4 ( 12
13

)6
4.
(

5
2

)(
2
9

)2 ( 7
9

)3
5. e−250250250

250!

6. e−10105

5!

7. μ = 2, Var= 1.6
8. μ = 5, Var= 5
9. Use Poisson approximation.

e−556

6!

10. Use Poisson approximation.
1 −

(
4e−3 + 9e−3

2

)
Exercise 14.1 (page 198):

1. Bernoulli
2. Binomial
3.
(

1
2

)10
4.
(

20
10

)(
1
2

)20
5.
(

3
4

)25 + 25
4

(
3
4

)24
6. The probability of choosing a par-

ticular colour in a specific trial
changes because it is dependent on
the outcomes of the previous
trials.
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Exercise 14.2 (page 201):

1. Every event is independent. The
average rate does not change over
the interval we examine. The num-
ber of events that occur in a given
time period depends only on the
length of the time period and the
average rate of occurrances. For a
tiny time interval, either 0 or 1
events will occur (i.e., two or more
events cannot occur at exactly the
same instant).

2. X ∼ Po(7)
3. 25

2 e−5

4. e−454560

60!

5. e−363640

40!

6. e−0.2

7. 3e−3

8. e−101015

15!

Exercise 14.3 (page 204):

1. 0.6
2. 1.2
3. 5
4. 12
5. “n is large and p is small”
6. It is difficult to calculate the value

of the “choose” term with very
large numbers, and this isn’t nec-
essary when working with Poisson.

7. e−446

6!

8. 1 − 3e−2

Chapter 15

Test Yourself (page 207):

1. The behavioural approach to
probability asks an individual
which of two bets they prefer,
then changes one of the bets to

make it more or less favourable.
This process is repeated until the
individual being asked is indif-
ferent between the two bets, at
which point the individual’s per-
sonal probability elicitation can
by found by finding the proba-
bility of success of the bet that
was being modified. This is a bet-
ter approach than the frequency
approach because it does not re-
quire that we repeat an experi-
ment “many times,” as we do not
know the answer to the question,
“How many is many?”

2. It would have 1
4 (i.e., 90 degrees)

coloured the “success” colour, and
3
4 (i.e., 270 degrees) coloured the
“failure” colour.

3. 70%
4. 60 degrees
5. They value reward at its ex-

act monetary value (so they are
adopting a “1 for 1” utility func-
tion).

6. £2.00
7. £1.50
8. 5

42

9. Buy 500 plants
10. If the probability of business be-

ing good is greater than 3
7 , then

go to recruitment agency A, oth-
erwise go to recruitment agency B.

Exercise 15.1 (page 211):

1. The probability of an event hap-
pening is equal to the number of
times that it happened, divided by
the number of trials.

2. The frequency approach is only
valid if we repeat the trial “many
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times” – but how many is many?
3. When the number of trials tends

to infinity, the number of successes
divided by the total number of tri-
als will tend towards the probabil-
ity of a single success, with prob-
ability 1.

4. 1
2

5. 108 degrees
6. 3

20

Exercise 15.2 (page 214):

1. A utility function is a function
that assigns a value to a reward.

2. £2.50
3. x > 20p

4. 24p

5. 1
50

6. 1
40

7. x > 25
9

Exercise 15.3 (page 219):

1. Buy deluxe regardless of the prob-
ability of it being a good year.

2. Buy 1000.
3. If they believe that the probability

of the stationery shop being popu-
lar is greater than 2

15 , they should
go into the large unit, otherwise
they should go into the small unit.

Chapter 16

Test Yourself (page 221):

1. Yes
2. Yes
3. Yes
4. Maybe: we cannot deduce for cer-

tain either “yes” or “no.”
5. x = 3π

8

6. There are a number of different
ways to prove this, so as long as
your proof is rigorous and unam-
biguous, that’s fine. For the proof
used in the chapter, see the part
of section 16.2 entitled “An Old
Friend” (on page 227).

7. x = 2
√

2
8. Again, there are a number of dif-

ferent ways to prove this, so as
long as your proof is rigorous and
unambiguous, that’s fine. For the
proof used in the chapter, see the
part of section 16.2 entitled “The
Sine Rule” (on page 226).

9. It must be 3π
2 . By restricting the

length of the lines to the dis-
tance between the equator and the
North Pole, our lines are each 1

4

of the length of an equator. This
yields the angle sum of 3π

2 .
10. If we call the sum of the angles x,

then π < x < 3π.

Exercise 16.1 (page 225):

1. Yes
2. No
3. No
4. 1 (the centre of enlargement is

unimportant when the scale factor
is 1).

5. a) Congruent
b) Not congruent
c) Can’t say
d) Congruent
e) Congruent
f) Can’t say

Exercise 16.2 (page 233):

1. 2π
7
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2. a and d

3. d

4. b
2

5. From iv, OC sin CÔD = b
2 .

OC = R, CÔD = CB̂A (because
the angle at the centre is twice the
angle at the edge).
So R sin B = b

2 , and hence b
sin B =

2R.
6. Refer to figure C.3 (at end of

solutions).
OA sin AÔD = c

2

OA = R

AÔD = C

R sin C = c
2

c
sin C = 2R.

Exercise 16.3 (page 236):

1. We can’t say. Depending on the
lengths of the sides, it varies.

2. π. Two lines from the equator to
the north pole that are coincident
have π

2 at each side of the equator,
and 0 at the north pole, summing
in total to π.

3. 3π. Two lines from the equator to
the north pole that are coincident
have π

2 at each side of the equator,
and when traversing the reflex an-
gle, 2π at the north pole, summing
in total to 3π.

4. Simply divide any polygon up so
that it is made of lots of triangles!
This is possible for every polygon.

5. It must be a straight line through
the centre of the sphere.

6. It must be a plane (flat surface)
that passes through the centre of
the sphere.

7. 6000 km

8. π m

Chapter 17

Test Yourself (page 241):

1. e6+1
e6−1

2. ln(2 ±√
3)

3. ln(
√

2)
4. 8 cosh(4x)
5. 3 coth(3x)
6. 2e2x sinhx + e2x cosh x

7. etanh xsech2x

8. 1
3 tanh3 x + c

9. 2
3 sinh(3x) + c

10. 1
12 sinh(6x) − x

2 + c

Exercise 17.1 (page 246):

1. e5−e−5

2

2. e
3
2 +e

−3
2

2

3. e2−e−2

e2+e−2

4. e
√

2+e−√
2

e
√

2−e−√
2

5. x = ln(3 +
√

10)
6. x = ln(4 ±√

15)
7. x = ln(

√
3)

8. x = ln
√

7
5

Exercise 17.2 (page 250):

1. RHS= 1
4ex+y + 1

4ex−y + 1
4ey−x

+ 1
4e−(x+y) + 1

4ex+y − 1
4ex−y

− 1
4ey−x + 1

4e−(x+y)

= 1
2

(
ex+y + e−(x+y)

)
= cosh(x + y).

2. 2 sinh x cosh x
cosh2 x+sinh2 x

Divide top and bottom by cosh2 x:
2 tanh x

1+tanh2 x

3. a) 3 cosh(3x)
b) −2 sech x tanh x

c) ex sinhx + ex cosh x
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d) 2x sech2x2

e) cosech(ln x)
−cosech(ln x) coth(lnx)

f) tanhx

g) esinh x cosh x

h) cothx cos x − cosech2x sin x

i) ecosh x − cosech x coth xecosh x

Exercise 17.3 (page 251):

1. 1
2 sinh(2x) + c

2. 1
2 cosh(4x) + c

3. 1
2e2x + x + c

4. ex + e−x + c

5. 3 tanh(3x) + c

6. 1
2 sinh(2x) + x + c

7. 1
3 sinh3 x + c

8. −1
3 sech(3x) + c

9. tanh4 x + c

Chapter 18

Test Yourself (page 253):

1. k = mg tan θ

2.
(
25
√

3 + 5 − 3
√

2g
5

)
ms−2

3. 300ms−2 towards the centre of the
circle.

4. 32 ms−2

5. 8 N
6. 45 N
7. C = {(t, 3t + 2)|t ∈ R}
8. C = {(t, sin t)|t ∈ R}
9. 15

√
2

10. 99
20

Exercise 18.1 (page 260):

1. g
√

3
2 − g

5

2. g

2
√

2

3. Down
4. Up

5.
(√

2g
4 + 1

2 −√
3
)
ms−2

down the slope.
6. 10g√

3

Exercise 18.2 (page 267):

1. Towards the centre of the circle.
2. 5π ms−1

3. 2 ms−2

4. 45 ms−2

5. 36 N
6. 20 N

Exercise 18.3 (page 271):

1. {(t, t)|t ∈ R}
2.
{
(t, t2)|t ∈ R

}
3. {(3 + 2 cos θ, 3 + 2 sin θ)|θ ∈ [0, 2π)}
4. {(2 + 2 cos θ, 2 sin θ)|θ ∈ [0, π]}
5. 52
6. 80
7.
∫ 5

0

√
1 + 9t4dt

8.
∫ 3

0

√
1 + 16t2dt

Chapter 19

Test Yourself (page 273):

1. See Figure C.4 (at end of solu-
tions). Joining the dots is wrong.

2. See Figure C.5 (at end of solu-
tions). Joining the dots is wrong.

3. Yes it is (it is a strictly increasing,
and therefore increasing,
sequence).

4. Yes
5. No
6. No
7. Yes
8. 0
9. Neither

10. ∞
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Exercise 19.1 (page 276):

1. See Figure C.6 (at end of solu-
tions). Joining the dots is wrong.

2. See Figure C.7 (at end of solu-
tions). Joining the dots is wrong.

3. See Figure C.8 (at end of solu-
tions). Joining the dots is wrong.

4. See Figure C.9 (at end of solu-
tions). Joining the dots is wrong.

5. a) Increasing, strictly increasing,
monotonic

b) Decreasing, monotonic
c) Non-monotonic
d) Non-monotonic

Exercise 19.2 (page 280):

1. Yes. We cannot conclude anything
from this fact alone. We need
to test whether there’s a point
after which the sequence is al-
ways greater than this value, and
then whether this still holds if we
choose any number, not just 12.

2. No. We can conclude for certain
that an = −n does not tend to ∞.

3. Yes. We cannot conclude anything
from this fact alone. We need to
test whether this still holds if we
choose any number, not just 42.

4. Although some individual terms
are greater than 20, there is no
point after which every term is.
We can conclude for certain that
an = (−2)n does not tend to ∞.

5. Yes
6. Yes
7. No
8. Yes

Exercise 19.3 (page 282):

1. Yes (at the beginning of the se-
quence). We cannot conclude any-
thing from this.

2. No. We can conclude for certain
that an = 3n does not tend to 0.

3. Yes. We cannot conclude anything
from this.

4. No. We can conclude for certain
that an = (−3)n does not tend to
0.

5. Yes
6. No
7. No
8. Yes

Chapter 20

Test Yourself (page 285):

1. n2 + n

2. No
3. 0
4. The sequence tends to 0.
5. We can always find a finite num-

ber of terms that sum to at least
1, then of the remaining terms we
can always find a finite number of
terms that sum to at least 1, then
of the remaining terms we can al-
ways find a finite number of terms
that sum to at least 1, . . . .

6. The first pie has 1
3 filled in, the

second has 1
3 + 1

9 = 4
9 filled in, the

third has 1
3 + 1

9 + 1
27 = 13

27 filled in,
and so on. Visually, it is clear that
there will never be more than 1

2 a
pie, and so a finite value exists for
the summation of infinitely many
terms.

7. No
8. Yes
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9. 1
2n does, and every term in this se-
quence is simply 0.2 times the cor-
responding term in an = 1

2n .
10. 1

n does not, and every term in this
sequence is simply 0.3 times the
corresponding term in an = 1

n .

Exercise 20.1 (page 288):

1. n
6 (n + 1)(2n + 1)

2. n2

3. No
4. No
5. 0
6. 1
7. No
8. Yes

Exercise 20.2 (page 291):

1. The sequence an = 1
n .

2. No
3. No
4. Yes
5. 2

3

6. Yes

Exercise 20.3 (page 293):

1. an ≤ K · bn, for all n∑∞
n=1 bn is a finite number.

2. K is a positive, real number.
3. No (we can only use it on non-

negative sequences).
4. Yes
5. Compare to bn = 1

2n to see that
an = 3

2n does have a finite value
for its infinite sum.

6. Compare to bn = 1 to see that
an = 1 + 3

2n does not have a fi-
nite value for its infinite sum.

Figure C.1 Figure C.2
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Figure C.3 Figure C.4 an = 1, 3, 5, 7, 9, . . .

Figure C.5 an = n
2 Figure C.6 an = 1, 2, 1, 2, 1, 2, . . .

Figure C.7 an = 2, 4, 6, 8, . . . Figure C.8 an = 4 − n
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Figure C.9 an = sinn





Index

Absolute Value, 281
Acceleration, 139
Angular Velocity, 262
Antipodal, 239
Approximating Binomial, 203
Archimedean Spiral, 45
Argand Diagrams, 56
Asymptote, 9
Axiom, 65

Bernoulli Trial, 196
Bijective, 168
Binomial Distribution, 196

Cardioid, 44
Chain Rule, The, 249
Choose, 185
Circular Motion, 261
Comparison Test, The, 292
Complex Conjugate, 54
Complex Numbers, 51
Composition, 102
Conditioning, 191
Congruent, 224
Continuous, 3
Contrapositive, 178
Coordinates
– Cartesian, 32
– Parametric, 32
– Polar, 32
– – Cylindrical, 41
– – Spherical, 42
Cross Product, The, 70

Curvature, 272

Decreasing, 275
Determinant, 83
Dilation, 223
Discrete, 2
Displacement, 139
Domain, 167
Dot Product, The, 67

Eigenvalue, 105
Eigenvector, 105
Elicitation, 211
Enlargement, 101
Euclidean n-space, 62
Exact Division, 50
Expected Monetary Value, 212

Factorial, 185
Friction, 152
Function, 167

Golden Theorem, The, 209
Great Circle, 236

Half Lines, 36
Harmonic Sequence, The, 289

i, 51
Imaginary, 51
Increasing, 275
Independence, 186
Induction, 173
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Inequality, 2
Injective, 168, 181
Integers, 50
Integrating Factors, 128
Isometry, 224

Lemniscate, 44
Limaçon, 44
Linear Map, 90
Linearly Independent, 108

Main Diagonal, 81
Matrix, 74
– Addition, 75
– Diagonal, 81
– Identity, 81
– Inverse, 84
– Multiplication, 78
– Order of, 75
– Square, 75
– Subtraction, 76
– Zero, 82
Mean, 202
Monotonic, 275

Natural Logarithm, 25
Natural Numbers, 50, 172
Negate, 179
Newton’s Laws of Motion, 145
Norm, 63

Orthogonal, 69

Parameterisation, 268
Partial Fractions, 115
Periodic, 19
Principle of Induction, The, 173
Probability
– Behavioural, 210
– Frequency, 209
– Geometric, 210
Product Rule, The, 131

Proper Subset, 159

Quadrant, 33
Quadratic Formula, The, 51

Range, 167
Rational Numbers, 50
Real Numbers, 50
Reflection, 95, 223
Rotation, 223

Scalar, 64
Scalar Multiplication, 76
Separation of Variables, 120
Sequence, 274
Series, 286
Set, 158
Sine Rule, The, 226
Strictly Decreasing, 275
Strictly Increasing, 275
Subset, 159
Surjective, 168

Tending to 0, 281
Tending to Infinity, 276
Terminal Velocity, 148
Transformation, 223
Transitive, 3
Translation, 223
Trigonometry, 14
truth tables, 162

Unit Vector, 63
Utility Function, 212

Variance, 202
Velocity, 139

Well-Ordering Principle, The, 172

Zero Vector, The, 63
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